BAB II

TINJAUAN PUSTAKA

2.1 Penelitian Terkait

Penelitian yang dipublikasikan dalam bentuk jurnal dengan judul Sistem Smart Trash Pemilah Sampah Organik dan Anorganik Berbasis Internet of Things, menggunakan rangkaian alat dan sensor yang tersusun atas servo dan 2x16 proximity kapasitif, microcontroller Arduino, NodeMCU ESP8266. Melalui alat tersebut, sampah bisa mempunyai kemampuan membaca objek yang ada didepannya dengan sensor ultrasonik. Cara kerjanya ialah tutup tempat sampah yang bisa terbuka apabila ada objek yang terdeteksi di depan sensor, sampah yang terdeteksi tersebut membuat servo membuka tutup tempat sampah dan memasukkan ke dalam tempat sampah dengan sensor sampah promixity, yang nantinya mampu membaca jenis sampah. Adapun hasilnya ialah servo yang akan berputar 900 ke arah kiri apabila sampah yang dimasukkan ialah organik, dan berbanding terbalik yakni 1800 arah kanan apabila sampah tersebut ialah anorganik. Selain itu, sistem smart trash ini dilengkapi dengan monitoring isi tempat sampah, yang mana bisa memberitahukan pada petugas dalam bentuk pesan apabila tempat sampah sudah terisi penuh [1].

Pada penelitian dalam jurnal Sistem *Monitoring* Kapasitas Sampah

Pada Bak Sampah Secara *Real-Time* Berbasis *Internet of Things*,

menggunakan metode *water fall*, dengan memanfaatkan sensor ultrasonik

supaya bisa mendeteksi dan membaca data tingginya kapasitas sampah

sehingga bisa dihubungkan dengan nodemcu ESP-8266 yang berperan menjadi otak yang menangani proses masuknya data. Lalu setelahnya nodemcu ESP8266 akan mentransfer data ke *Platform Thingger* IO supaya petugas bisa *memonitoring* kapasitas sampah yang dimuat dalam bak sampah tersebut [2].

Penelitian lainnya yang dimuat dalam jurnal Smart Tong Sampah Pendeteksi Otomatis Sampah Organik & Anorganik Berbasis IoT Smart City, menggunakan metode penelitian antara lain yakni metode eksperimen, UML, dan metode waterfall. Pada umumnya ketiga metode tersebut biasanya dipergunakan dalam pengembangan sistem. Ketika sampah mendekati tong, maka proses sistem akan dimulai, diawali dengan identifikasi oleh sensor proximity terhadap keberadaan obiek. Kemudian sistem mempergunakan sensor warna TCS230 serta sensor tambahan supaya bisa menempatkan sesuai dengan kategori jenis sampah. Mengikuti dasar ketegori tersebut, tutup tong sampah yang sesuai akan terbuka otomatis apabila sampah diarahkan pada kompartemen yang benar. Lalu setelahnya data tentang jenis dan volume sampah ditransmisikan ke server melalui modul Wi-Fi ESP32 supaya bisa dipantau secara *real-time* [3].

Penelititan berupa jurnal ilmiah yang berjudul Perancangan dan Pembuatan *Smart Trash Bin* Berbasis Arduino Uno di Universitas Maarif Hasyim Latif, menciptakan solusi melalui pembuatan *smart trash bin* berbasis arduino uno dengan memanfaatkan sensor HCSR04 guna memicu kenaikan tingkat kesadaran dalam kebersihan juga kepedulian lingkungan [4].

Penelititan dalam jurnal yang berjudul Perancangan Sistem Tempat Sampah Pintar Dengan Sensor HCRSF04 Berbasis Arduino UNO R3, dengan simpulan yang bisa diambil ialah pernyataan tentang tempat sampah pintar yang dilengkapi sensor HC-SRF04 berbasis arduino uno R3 telah mampu bekerja menjalankan fungsinya dengan baik, tempat sampah pintar dengan sensor HC-SRF04 berbasis arduino uno R3 ini sanggup melakukan deteksi dengan jarak 10 cm sehingga nanti tutup tempat sampah secara otomatis bisa terbuka dikarenakan adanya servo [5].

2.2 Landasan Teori

2.2.1 Arduino Uno

Arduino Uno R3 merupakan versi ketiga dari seri Arduino Uno yang dirilis pada tahun 2011. "R3" menandakan revisi ketiga, dengan mikrokontroler Atmega328 buatan Atmel yang termasuk dalam jenis mikrokontroler 8-bit [6]. Tampilan fisik Arduino Uno dapat dilihat pada Gambar 2.1.

Gambar 2.1 Arduino Uno

2.2.2 Sensor Ultrasonik

Sensor ultrasonik merupakan sensor yang berfungsi mengubah besaran fisis berupa gelombang bunyi menjadi besaran listrik, dan sebaliknya. Prinsip kerjanya didasarkan pada pantulan gelombang suara untuk mengukur jarak suatu objek. Disebut sensor ultrasonik karena bekerja menggunakan gelombang bunyi dengan frekuensi ultrasonik [4]. Tampilan fisik sensor ultrasonik dapat dilihat pada Gambar 2.2.

Gambar 2.2 Sensor Ultrasonik

2.2.3 Sensor *Proximity*

Proximity Switch atau Sensor Proximity merupakan sensor yang digunakan untuk mendeteksi keberadaan objek berdasarkan jaraknya terhadap sensor. Sensor ini umumnya mampu mendeteksi objek pada jarak sangat dekat, yaitu sekitar 1 mm hingga beberapa sentimeter, tergantung pada tipe sensornya [7]. Tampilan fisik sensor proximity dapat dilihat pada Gambar 2.3.

Gambar 2.3 Sensor Proximity

2.2.4 ESP32

ESP32 merupakan suatu modul dengan tegangan LM2596 yang sudah dimuat didalamnya, fungsi regulator tersebut ialah untuk bisa menurunkan tegangan supaya ESP32 bisa beroperasi [8]. Tampilan fisik ESP32 dapat dilihat pada Gambar 2.4.

Gambar 2.4 ESP32

2.2.5 Motor Servo

Motor servo dideskripsikan sebagai suatu motor yang disertai sistem umpan balik tertutup, posisi motor tersebut akan ditransmisikan berupa informasi menuju rangkaian kontrol yang ada pada motor servo [9]. Tampilan fisik motor servo dapat dilihat pada Gambar 2.5.

Gambar 2.5 Motor Servo

2.2.6 Adaptor

Adaptor didefisinikan sebagai suatu rangkaian yang digunakan untuk mengubah tegangan AC tinggi menjadi DC rendah. Tegangan DC (seperti ;baterai,Aki) bisa digantikan oleh alternatif lain yakni adaptor dikarenakan tegangan AC yang digunakan lebih lama. Selain itu, seseorang bisa bebas mempergunakan adaptor tersebut dengan syarat adanya aliran listrik yang sampai ke tempat yang diinginkan. tegangan AC lebih lama dan setiap orang dapat menggunakannya asalkan ada aliran listrik di tempat tersebut [10]. Tampilan fisik adaptor dapat dilihat pada Gambar 2.6.

Gambar 2.6 Adaptor

2.2.7 Sensor Load Cell

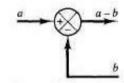
Load cell ialah sensor yang mempunyai tingkatan presisi cukup tinggi dengan kemampuan pengubah tekanan menjadi sinyal elektrik. Deteksi sensor load cell mempunyai tingkat akurasi dan presisi yang juga terpengaruh oleh komponen elektronik yang dipergunakan sebagai sarana dalam mengendalikan dan mengkalkulasikan bacaan dari sensor, begitupun juga dengan desain mekanik [11]. Tampilan fisik sensor load cell dapat dilihat pada Gambar 2.7.

Gambar 2.7 Sensor Load Cell

2.2.8 Blok Diagram

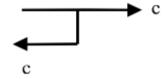
Blok Diagram ialah perwakilan fungsi komponen di suatu sistem pengendalian serta hubungan antara sebuah komponen dan yang lainnya. Fungsi yang dimiliki blok tersebut terbagi menjadi setiap bagian blok sistem masing-masing, Rancangan sistem bisa dibuat dengan baik apabila mampu memahami gambar blok diagram yang ada. Dalam sebuah blok diagram, blok fungsional menjadi penghubung antar seluruh variabel sistem. Blok diagram berisi data perilaku dinamik namun belum mencakup data tentang bentuk fisik dari sistem. Maka dari itulah, sejumlah sistem yang berbeda dan tidak memiliki korelasi diantaranya bisa dikategorikan sebagai blok diagram yang sama. Blok diagram sebuah sistem ialah tidak unik. Sebuah sistem dengan blok diagram yang berbeda bisa dideskripsikan tergantung pada titik pandang analisis. Setelah ini akan dirincikan komponen-komponen dasar Blok Diagram:

1. Blok Fungsional

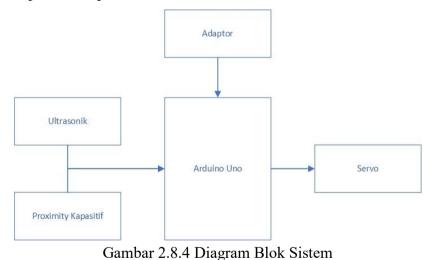

Blok fungsional atau seringkali diistilahkan sebagai blok dengan fungsi alih komponen, yang dikorelasikan dengan anak panah sebagai penunjuk arah aliran sinyal. Blok yang dituju oleh anak panah menjadi sebuah masukan, adapun blok yang ditinggalkan oleh anak panah menunjukkan pernyataan keluaran. Blok fungsional dapat dilihat pada Gambar 2.8.1.

Gambar 2.8.1 Blok Fungsional

2. Titik Penjumlahan (Summing Point)


Titik penjumlahan diwakili oleh lingkaran dengan tanda silang (X) yang ada didalamnya serta mempunyai dua atau lebih *input* dan *output* tunggal. Hasil yang diperoleh melalui titik penjumlahan berupa jumlah aljabar dari *input*, lalu memberlakukan penjumlahan, pengurangan, ataupun kombinasi keduanya dengan dasar prioritas *input*. Titik penjumlahan dapat dilihat pada Gambar 2.8.2.

Gambar 2.8.2 Titik Penjumlahan


3. Percabangan

Apabila ditemukan satu blok atau lebih, lalu diinginkannya penerapan *input* yang sama pada seluruh blok, bisa mempergunakan percabangan. Melalui penggunaan percabangan, penyebaran *input* ke seluruh blok tidak menjadi pengaruh terhadap nilainya. Percabangan dapat dilihat pada Gambar 2.8.3.

Gambar 2.8.3 Percabangan

Berdasarkan spesifikasi yang telah dipaparkan maka dibuatlah suatu diagram blok dari pembuatan alat yang dirancang guna memenuhi spesifikasi yang dimaksud. Diagram blok sistem dapat dilihat pada Gambar 2.8.4.

2.2.9 Flowchart

Flowchart merupakan gambaran berbentuk suatu grafik yang disertai langkah-langkah dan urutan suatu prosedur dari suatu

program. *Flowchart* dapat membantu proses analisis, perancangan dan pengkodean untuk memecahkan masalah kedalam sejumlah bagian yang cenderung lebih kecil guna pengoperasiannya. *Flowchart* seringkali dipergunakan untuk memudahkan terselesaikannya sebuah masalah di evaluasi lebih lanjut.

Tabel 2.1 Simbol Flowchart

No	Simbol	Nama	Fungsi
1		Terminator	Permulaan/akhir program
2		Garis	Arah/aliran program
3		Preparation	Proses inisialisasi
4		Proses	Proses perhitungan/pengolahan data
5		Input/Output	Proses <i>input/output</i> data, parameter, informasi
6		Predefined Process	Permulaan sub program/proses mengoperasikan sub program
7	\Diamond	Decision	Perbandingan pernyataan, penyelesaian data yang menyajikan pilihan untuk langkah yang setelahnya
8		On Page Connector	Penghubung bagian- bagian <i>flowchart</i> yang diposisikan pada satu halaman
9		Off Page Connector	Penghubung bagian- bagian <i>flowchart</i> yang diposisikan pada halaman yang berbeda