BAB I

PENDAHULUAN

1.1 Latar Belakang

Kecerdasan buatan adalah bidang ilmu komputer yang berfokus pada pembuatan sistem yang dapat meniru kemampuan manusia untuk berpikir, menganalisis, dan mengambil keputusan. Salah satu penerapan kecerdasan buatan adalah sistem pakar, yaitu sistem berbasis komputer yang dirancang untuk menggunakan pengetahuan dan penalaran seorang pakar untuk memecahkan masalah tertentu [1]. Dalam bidang kesehatan, sistem pakar telah banyak dimanfaatkan, khususnya untuk membantu proses diagnosis awal suatu penyakit serta memberikan rekomendasi penanganan dini kepada masyarakat.

Penyakit pencernaan merupakan salah satu jenis gangguan kesehatan yang umum terjadi di masyarakat dan menyerang organ-organ pencernaan seperti lambung, usus, hati, dan saluran pencernaan lainnya. Penyakit ini dapat disebabkan oleh berbagai faktor, seperti pola makan yang tidak sehat, kurangnya asupan serat, minimnya aktivitas fisik, stres, dan infeksi bakteri atau virus. Proses diagnosis penyakit pencernaan tidak selalu mudah karena gejala yang ditimbulkan seringkali mirip antara satu penyakit dengan yang lain. Oleh karena itu, dibutuhkan pengetahuan dan pengalaman medis yang memadai untuk dapat mengidentifikasi penyakit secara akurat.

Seiring dengan berkembangnya teknologi informasi, pengembangan sistem pakar menjadi semakin penting untuk membantu masyarakat dalam mengenali gejala penyakit secara mandiri. Sistem pakar yang dikembangkan dalam

penelitian ini dirancang berbasis website agar dapat diakses dengan mudah oleh pengguna. Sistem serupa juga telah diterapkan untuk diagnosis penyakit mata, di mana *Naive Bayes* digunakan untuk mengklasifikasikan gejala dan memberikan rekomendasi melalui antarmuka web yang intuitif [2]. Sistem ini memberikan kemudahan bagi pengguna untuk mengidentifikasi kemungkinan penyakit pencernaan berdasarkan gejala yang dirasakan.

Dalam merancang sistem pakar, pemilihan metode klasifikasi yang tepat sangat berpengaruh terhadap keakuratan hasil diagnosis. Metode *Naive Bayes* sering digunakan dalam sistem diagnosis berbasis web karena memiliki struktur perhitungan yang sederhana dan efesien. Metode ini mampu memprediksi kelas berdasarkan probabilitas posterior tertinggi dari kombinasi gejala yang dipilih pengguna. Penelitian sebelumnya juga sudah pernah dilakukan untuk mendiagnosa penyakit pencernaan. Penelitian tersebut membuktikan bahawa metode *Naïve Bayes* mampu menghasilkan tingkat akurasi yang baik dalam mengklasifikasikan gejala penyakit pencernaan. Selain itu, sistem yang dikembangkan dalam penelitian tersebut juga terbukti dapat membantu pengguna dalam mengenali penyakit secara lebih cepat dan efisien melalui antarmuka berbasis web [3].

Oleh karena itu, penelitian ini bertujuan untuk mengembangkan sistem pakar berbasis *website* untuk mendiagnosis penyakit pencernaan manusia menggunakan metode *Naïve Bayes*. Dengan adanya sistem ini, diharapkan pengguna dapat memperoleh informasi mengenai kemungkinan penyakit pencernaan secara cepat dan akurat, sehingga dapat meningkatkan kasadaran

untuk segara mengambil langkah penanganan yang tepat, termasuk solusi awal bagi masyarakat awam.

1.2 Batasan Masalah

Batasan masalah pada penelitian ini mencakup hal-hal sebagai berikut:

- Penyakit yang didiagnosa hanya penyakit pencernaan, yaitu: GERD, Kolestasis Kronis, Tukak Lambung, Muntaber, dan Hemoroid.
- Metode yang diterapkan dalam klasifikasi diagnosis adalah metode *Naïve* Bayes.
- 3. Sistem pakar ini hanya dapat memberikan diagnosa awal dan rekomendsi umum, bukan sebagai pengganti diagnosis dokter secara klinis.

1.3 Tujuan dan Manfaat

1.3.1 Tujuan

Penelitian ini bertujuan untuk mengembangkan sistem pakar berbasis website yang dapat membantu pengguna dalam melakukan diagnosis awal penyakit pencernaan secara mandiri. Sistem ini menggunakan metode Naive Bayes sebagai algoritma klasifikasi untuk menentukan kemungkinan penyakit pencernaan berdasarkan gejala yang dialami pengguna. Selain itu, sistem juga menyediakan informasi berupa solusi atau rekomendasi awal sehingga pengguna dapat segera mengambil langkah pencegahan atau penanganan secara tepat dan cepat.

1.3.2 Manfaat

Adapun manfaat yang diperoleh dari penelitian ini adalah sebagai berikut:

1. Membantu pengguna dalam melakukan diagnosa awal penyakit

pencernaan secara mandiri melalui sistem pakar serta memperoleh informasi tambahan mengenai pencegahan dan penanganan awal dari penyakit yang diderita.

- Membantu dalam mengelola data pengguna, gejala, penyakit dan riwayat diagnosa dan memastikan sistem berjalan secara optimal dengan hasil diagnosa yang akurat.
- Menjadi sarana untuk mengambangkan sistem pakar dalam bidang kesehatan dengan dukungan algoritma Naïve Bayes.

1.4 Tinjauan Pustaka

Sistem Pakar Diagnosa Gangguan Pencernaan Balita Dengan Metode *Naïve Bayes* bertujuan untuk mengembangkan sistem pakar yang dapat mendiagnosis gangguan pencernaan pada balita, seperti diare dan sembelit. Sistem ini memanfaatkan metode *Naïve Bayes* untuk menghitung probabilitas diagnosis berdasarkan gejala yang diinput oleh pengguna. Data yang digunakan diambil dari Puskesmas Sugio Lamongan dan diuji pada 100 pasien. Hasil pengujian menunjukan tingkat akurasi sebesar 87%, dengan 87 diagnosis yang sesuai hasil pemeriksaan dokter. Penelitian ini mengindikasikan bahwa metode *Naïve Bayes* efektif untuk diterapkan dalam sistem pakar medis yang berbasis gejala, serta berfungsi sebagai alat bantu untuk diagnosis awal yang mudah diakses oleh masyarakat [4].

Sistem Pakar Diagnosis Penyakit Ispa Menggunakan Metode *Naïve Bayes*Berbasis Web Pada Puskesmas Teratek bertujuan untuk membangun sistem pakar yang dapat membantu masyarakat dalam mendiagnosis penyakit Infeksi Saluran

Pernapasan Akut (ISPA) berdasarkan gejala yang dialami. Sistem ini dikembangkan berbasis web menggunakan Bahasa pemrograman Codelgniter serta database MySQL. Metode *Naïve Bayes* dipilih kerna memiliki tingkat probabilitas yang tinggi dalam klasifikasi. Penelitian ini menggunakan 104 data latih dan 39 data uji, dengan hasil akurasi sebesar 92,3%. Aplikasi yang dibuat memiliki dua actor, yaitu admin yang dapat mengelola data penyakit, gejala, serta aturan, dan pengguna yang dapat melakukan konsultasi gejala serta memperoleh hasil diagnosa. Hasil penelitian menunjukan bahwa sistem pakar ini mampu memberikan diagnosis awal ISPA secara cepat dan akurat, sekaligus meningkatkan pemahaman masyarakat mengenai gejala, penyebab, dan penanganan ISPA [5].

Penerapan Teorema Bayes Pada Sistem Pakar Diagnosa Gastrointestinal bertujuan untuk mengembangkan sistem pakar yang dapat membantu mendiagnosis gangguan pada sistem pencernaan (gastrointestinal) secara lebih cepat dan akurat. Sistem ini memanfaatkan Teorema Bayes untuk menghitung probabilitas penyakit berdasarkan kombinasi gejala yang dipilih oleh pengguna. Data gejala dan penyakit diperoleh dari referensi medis dan divalidasi oleh pakar. Hasil pengujian menunjukan bahwa sistem mampu memberikan diagnosis yang sesuai dengan pendapat pakar pada sebagian besar kasus uji, sehingga membuktikan bawha Teorema Bayes efektif diterapkan untuk membantu diagnosis awal penyakit pencernaan [6].

Penerapan Metode *Naive Bayes Classifier* Pada Sistem Pakar Diagnosa Penyakit Lambung membahas pengembangan sistem pakar berbasis web yang bertujuan untuk membantu dalam mendiagnosis penyakit lambung, seperti gastritis, GERD, dan tukak lambung. Sistem ini menggunakan metode *Naive Bayes Classifier*, yang merupakan metode klasifikasi berbasis probabilistis yang menghitung kemungkinan suatu penyakit berdasarkan kombinasi gejala yang dipilih oleh pengguna. Sistem ini mampu memberikan diagnosis yang akurat sesuai dengan data uji yang telah disediakan [7].

Sistem Pakar Diagnosa Penyakit Pencernaan Manusia Berbasis Web Menggunakan Metode Naïve Bayes bertujuan untuk mengembangkan sistem pakar yang mampu membantu masyarakat dalam melaukuan diagnosis dini penyakit pencernaan secara cepat dan tepat. Sistem ini dibangun dengan menerapkan metode Naïve Bayes untuk menghitung probabilitas terjadinya penyakit berdasarkan gejala yang dipilih pengguna. Proses inferensi menggunakan metode Forward Chaining dengan kaidah atturan IF-THEN untuk menentukan hasil diagnosa. Sistem dirancang berbasis web sehingga mudah diakses oleh masyarakat awam. Hasil penelitian menunjukan bahwa sistem ini mampu memberikan diagnosis yang akurat dan menyediakan solusi penanggulangan penyakit pencernaan secara dini, sehingga dapat menjadi sarana alternatif dalam meningkatkan akses informasi kesehatan dan membantu masyarakat mengenali penyakit pencernaan [8].

Berdasarkan tinjauan pustaka yang telah dilakukan, terdapat perbedaann yang jelas antara penelitian yang telah dilakukan sebelumnya dan penelitian yang sedang berlangsung saat ini, sebagaimana ditunjukan dalam Tabel 1.1.

Tabel 1. 1 Gap Penelitian.

No	Penelitian Terdahulu	Penelitian Saat Ini
1	Sistem Pakar Diagnosa	Dikembangkan berbasis website
	Gangguan Pencernaan Balita	agar lebih mudah diakses oleh
	Dengan Metode Naïve Bayes	pengguna umum. Sistem dilengkapi
	(2024), berbasis aplikasi	dengan dua aktor (admin dan user),
	sederhana (non-web), tanpa fitur	serta fitur pengelolaan data gejala,
	admin dan user, serta hasil	penyakit dan riwayat diagnosa.
	diagnosis ditampilkan tanpa	
	riwayat.	
2	Sistem Pakar Diagnosis Penyakit	Berbasis web tetapi dengan integrasi
	ISPA Menggunakan Metode	PHP dan Flask untuk memisahkan
	Naïve Bayes Berbasis Web Pada	backend dan frontend. Model Naïve
	Puskesmas Teratek (2023),	Bayes dilatih terlebih dahulu
	berbasis web framework	menggunakan dataset. Sistem
	Codelgniter, menggunakan	memiliki fitur diagnosa, riwayat
	metode Naïve Bayes yang dihitung	diagnosa, serta pengelolaan data
	langsung di database tanpa model	gejala dan penyakit.
	pembelajaran terpisah. Fitur	
	sistem hanya konsultasi sederhana	
3	Penerapan Teorema Bayes Pada	Menerapkan metode Naïve Bayes
	Sistem Pakar Diagnosa	berbasis machine learning dengan
	Gastrointestinnal (2024),	dataset terstruktur. Sistem

menggunakan *Teorema Bayes*murni, tanpa algoritma *machine learning* dan tanpa dataset
terstruktur. Sistem masih statis,
tidak memiliki user login, admin,
dan riwayat diagnosa.

dikembangkan berbasis web interaktif dengan dua peran (admin dan user), serta dilengkapi fitur riwayat diagnosa.

4 Penerapan Metode Naïve Bayes Classifier Pada Sistem Pakar Diagnosa Penyakit Lambung (2021), Berbasis web sederhana dengan cakupan penyakit terbatas (Gastritis dan GERD). Proses diagnosis langsung tanpa penyimpanan riwayat dan tanpa pengelolaan data.

Memperluas cakupan menjadi 5 penyakit pencernaan (GERD, Kolesitas Kronis, Tukak Lambung, Muntaber. Hemoroid). Sistem berbasis dengan integrase web backend Flask, serta dilengkapi dengan fitur admin untuk pengelolaan data penyakit gejala, user, serta fitur riwayat diagnosa.

Sistem Pakar Diagnosa Penyakit
Pencernaan Manusia Berbasis
Web Menggunakan Metoda *Naive*Bayes (2025), Berbasis rule-based
(IF-THEN), menggunakan
forward chaining, tanpa penerapan
algoritma machine learning.

Menggunakan metode *Naïve Bayes* berbasis probabilistic *mechine* learning, bukan rule-based. Sistem dilengkapi fitur admin, pengelolaan gejala dan penyakit, serta riwayat diagnosa.

1.5 Data Penelitian

1.5.1 Bahan Penelitian

Data yang digunakan dalam penelitian ini berupa dataset penyakit pencernaan yang diperoleh dari platform Kaggle dengan judul *Disease Prediction Using Machine Learning* (https://www.kaggle.com/datasets/kaushil268/disease-prediction-using-machine-learning). Dataset tersebut awalnya terdiri dari 4920 entri dengan 133 gejala (atribut) dan 41 jenis penyakit (label). Untuk menyesuaikan dengan fokus penelitian ini, dataset kemudian difilter hanya mencakup penyakit pencernaan. Dari hasil filtering diperoleh 5 jenis penyakit pencernaan dan 21 gejala yang relevan. Gejala dan penyakit pencernaan yang digunakan dalam penelitian ini, ditunjukan pada Tabel 1.2.

Tabel 1. 2 Penjelasan Atribut Dataset Penyakit Pencernaan

Nama Atribut (Gejala)	Keterangan
Sakit Perut	Rasa nyeri atau tidak nyaman di bagian perut
Asam Lambung	Sensasi terbakar di dada akibat naiknya asam lambung
Muntah	Pengeluaran isi lambung melalui mulut
Dehidrasi	Kondisi kekurangan cairan tubuh
Gangguan Pencernaan	Proses pencernaan tidak berjalan normal

Hilang nafsu makan	Penurunan keinginan untuk makan					
Sembelit	Kesulitan atau jarang buang air besar					
Nyeri Perut	Nyeri di area perut akibat gangguan					
	pencernaan					
Diare	Frekuensi buang air besar meningkat dengan					
	konsistensi cair					
Urin Berwarna Kuning	Perubahan warna urin menjadi lebih kuning					
Mata Menguning	Perubahan warna pada mata mejadi kuning					
	akibat gangguan hati					
Gagal Hati Akut	Penurunan fungsi hati secara tiba-tiba					
Perut Membengkak	Pembesaran atau kembung pada bagian perut					
Nyeri Saat BAB	Rasa sakit saat buang air besar					
Nyeri di Anus	Rasa sakit di sekitar anus akibat peradangan					
	atau luka					
Tinja Berdarah	Keluar darah saat buang air besar					
Iritasi di Anus	Rasa gatal atau perih di sekitar anus					
Sakit Perut Bagian Bawah	Rasa sakit di area perut bagian bawah					
Pendarahan Lambung	Pendarahan pada lambung akibat luka atau					
	infeksi					
Perut Kembung	Perasaan penuh atau tekanan di perut					
Riwayat Konsultasi Alkohol	Kebiasaan mengonsumsi minuman beralkohol					
	yang mempengaruhi fungsi hati					

Diagnosis (Label)	GERD, Kolestasis Kronis, Tukak Lambung,
	Muntaber, Hemoroid

Seluruh atribut direpresentasikan dalam nilai biner, yaitu: 0 = tidak mengalami gejala dan 1 = mengalami gejala. Atribut "Diagnosis" berfungsi sebagai label keluaran (output) yang menjadi target klasifikasi pada model *Naïve Bayes*.

Nama gejala dan penyakit yang sebelumnya menggunakan bahasa Inggris telah diterjemahkan ke dalam bahasa Indonesia agar lebih mudah dipahami oleh pengguna. Dataset akhir terdiri dari 600 entri setelah melalui proses preprocessing berupa filtering atribut, penerjemahan atribut dan label, serta encoding data. Dataset kemudian digunakan untuk pelatihan dan pengujian model klasifikasi menggunakan metode Naïve Bayes, dan hasil model disimpan dalam file .pkl untuk diintegrasikan ke dalam aplikasi sistem pakar berbasis website. Tampilan dataset dapat dilihat pada gambar 1.1.

Si	akit_perut	asam_lambung	muntah	dehidrasi	gangguan_pencernaan	hilang_nafsu_makan	sembelit	nyeri_perut	diare	urin_warna_kuning	mata_mengguning	gagal_hati_akut	perut_me
0	0	1	1	0	0	0	0	0	0	0	0	0	
1	1	1	1	0	0	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	0	0	0	
3	1	0	1	0	0	0	0	0	0	0	0	0	
4	1	1	1	0	0	0	0	0	0	0	0	0	
5	1	1	1	0	0	0	0	0	0	0	0	0	
6	1	1	1	0	0	0	0	0	0	0	0	0	
7	1	1	1	0	0	0	0	0	0	0	0	0	
8	1	1	0	0	0	0	0	0	0	0	0	0	
9	1	1	0	0	0	0	0	0	0	0	0	0	

Gambar 1. 1 Tampilan Dataset

1.5.2 Alat Penelitian

Alat yang digunakan dalam penelitian ini dapat dilihat tabel 1.3.

Tabel 1. 3 Alat Penelitian

No	Alat	Fungsi
1	PHP	Bahasa Pemograman untuk membangun
		antarmuka pengguna dan logika sistem
2	Flask	Framework Python untuk
		menghubungkan sistem dengan model
		.pkl
3	XAMPP	Web server local untuk mengeksekusi
		kode PHP dan MySQL
4	Google Colab	Untuk pelatihan model klasifikasi
5	Web Browser (Chrome)	Mengakses dan menguji antarmuka
		website sistem pakar
6	Visual Studio Code	Integrated Development Environment
		(IDE) untuk menulis, mengedit, dan
		mengelola kode program
7	Laptop Lenovo	Membangun aplikasi.
	denganspesifikasi:	
	• RAM: 8 GB	
	• Storage: 256 GB	
	• Prosesor: Intel Core i3	
	Gen 13th	
8	ChatGPT	Alat bantu dalam penulisan kode,
		debugging, dan dokumentasi sistem.