BAB II TINJAUAN PUSAKA

2.1 Teori Terkait

Ririt Dwiputri Permatasari, Indah Kusuma Dewi, dan Agus Suryadi Tommy Saputra (2022) melaporkan bahwa Purchase Order (PO) sebagai dokumen resmi digunakan untuk memesan dan mengajukan permintaan pembelian. Dalam pengadaan barang, Fakultas Teknik sedang mengalami masalah pada sistem pengadaan barang berbentuk PO yang masih dilakukan secara manual. Barang yang diminta seperti melalui pengisian formulir yang telah ditentukan manual dan perlu disetujui oleh Wakil Dekan II khususnya saat bagian aset tidak ada di tempat. Hal ini menyebabkan manajer tidak bisa secara tepat dalam menganalisis dan secara aktual dan secara tepat dan akurat dalam merencanakan pengadaan barang. Secara sistematis, hal ini pengambilan keputusan berbasis informasi yang efektif dan akurat untuk perubahan yang berbasis sistem informasi. Untuk memenuhi tujuan tersebut, terdapat beberapa fokus yang perlu dikaji seperti, sistem IT otomatis mampu mengolah, merekap, dan mempresentasikan data secara langsung. Dengan implementasi sistem yang sudah ada, pengadaan barang fakultas akan lebih 'efektif' dan presisi sasaran pada sistem hemat PO.[2]

Ardian Dwi Praba dan Maryanah Safitri FaridiSistem melakukan sebuah studi pada tahun 2024 yang menjelaskan bahwa informasi dalam proses manajemen akuisisi berkaitan dengan nilai informasi dalam mengotomatiskan beberapa langkah proses pembelian yang mencakup, tetapi

tidak terbatas pada, pemilihan pemasok, pengajuan pesanan pembelian, serta integrasi pelacakan pengiriman. Manfaat dari pemanfaatan kerangka kerja *Laravel* adalah pengurangan kesalahan input dan akses yang lebih cepat dan lebih mudah bagi pengguna, serta integrasi yang mulus dengan sistem periferal dalam organisasi. Sebagai kerangka kerja *PHP modern, Laravel* sangat dikenal karena skalabilitasnya, kemudahan penggunaan, fitur keamanan data yang baik, dan manajemen transaksi yang efektif yang semuanya berkontribusi secara substansial dalam menyederhanakan pembelian. Efisiensi sistem ini terbukti dengan berkurangnya kesalahan manual, percepatan alur kerja dalam pembelian, dan transparansi yang lebih besar di semua tahap proses pembelian. Dengan demikian, sebuah organisasi dapat sangat meningkatkan manajemen waktu dan sumber dayanya dengan memanfaatkan sistem berbasis *Laravel* yang pada gilirannya membantu meningkatkan efektivitas dan efisiensi keseluruhan dari proses manajemen pembelian.[3]

Dalam penelitian yang dilakukan Aini dan Risanty (2022), dijelaskan bahwa di zaman yang serba digital ini, informasi dan transaksi perdagangan dapat dilakukan secara mudah dan cepat secara online. *Purchase Order (PO)* adalah dokumen yang berfungsi dalam perdagangan yang memerlukan perhatian lebih pada karakteristik barang yang diacuhkan. Metode ini menghadapkan berbagai masalah seperti rendahnya produktivitas karyawan, kelebihan dalam berapa jumlah paper use, serta meningkatnya kemungkinan hilangnya data yang telah dipesan, apalagi di dalam perusahaan yang jumlah

karyawannya terbatas. Oleh sebab itu, diperlukan sistem informasi yang bersifat digital untuk meningkatkan efisiensi kerja, menurunkan tingkat penggunaan kertas, menghentikan kehilangan data, dan memperbaiki dis administratif.[4]

Studi dari Azhari, Lukman Husein, Syepry Maulana Mabrur, Nur Shobi Prihandoko, dan Aldi (2022) menjelaskan bahwa kebutuhan internal sebuah perusahaan dikelola oleh beberapa departemen seperti Pembelian yang bertanggung jawab untuk memenuhi kebutuhan perusahaan dan mengelola hubungan dengan pemasok. Untuk mendukung fungsi-fungsi ini, diperlukan sistem manajemen *Purchase Order* yang secara efisien mencatat, mengontrol, dan memonitor pengeluaran perusahaan. Solusi yang diusulkan adalah aplikasi berbasis web yang dapat diakses melalui smartphone, tablet, PC, atau laptop dan tidak memerlukan data disimpan secara lokal karena disimpan di server dan diakses menggunakan browser. Sistem informasi ini mengintegrasikan penangkapan dan pengolahan data untuk menghasilkan informasi yang berguna dengan kualitas tinggi dan sekaligus memberikan kebutuhan internal perusahaan akan fleksibilitas, aksesibilitas, dan pengelolaan efisien dalam proses *Purchase Order*.[5]

2.2 Landasan Teori

2.2.1 Visual Studio Code

Visual Studio Code adalah aplikasi editor kode buatan Microsoft yang dapat digunakan secara gratis di semua perangkat desktop. Kode editor ini sangat disukai oleh pengembang karena memiliki banyak fitur dan ekstensi. Bahkan hampir semua sistem operasi, seperti Windows, Mac OS, dan Linux, didukung oleh Visual Studio Code.[6] Mengembangkan sistem Purchase Order berbasis web di Els Laptop Tegal dengan Visual Studio akan meningkatkan produktivitas toko dan mengurangi ketergantungan pada sistem manual.

Gambar 2.1 Visual Studio Code

2.2.2 *XAMPP*

XAMPP adalah program open source berbasis web server yang dibuat oleh kelompok Apache Friend pada tahun 2002 dan tersedia secara gratis dengan lisensi General Public License (GNU). XAMPP berfungsi sebagai server lokal dan mendukung berbagai sistem operasi populer, seperti Linux, Windows, MacOS, dan Solaris.

XAMPP menawarkan kemudahan dalam pengeditan, desain, dan pengembangan aplikasi dengan menjadi server standalone atau berdiri sendiri.XAMPP dianggap dapat menghemat uang karena dapat menggantikan peran web hosting dengan menyimpan file di localhost, yang dapat dipanggil atau dihubungkan melalui browser. Programprogram yang tersedia dalam program ini dikenal sebagai XAMPP.[7]

Gambar 2.2 XAMPP

1. *X* (*Cross Platform*)

Kode ini berfungsi sebagai penanda untuk program yang berjalan di berbagai sistem operasi, termasuk *Windows, Linux, MacOS*, dan *Solaris*.[8]

2. *A (Apache)*

Ini berarti bahwa banyak orang dapat membuat *web server* gratis (open source) untuk membuat halaman *web* yang baik. Pengguna dapat menjalankan file *PHP* di *localhost* dengan menggunakan *web* server.[9]

3. M (MySQL/MariaDB)

MySQL adalah salah satu aplikasi database server yang menggunakan basa pemrograman query language structured (SQL) untuk mengelola data dengan cara yang sistematis dan terstruktur.

Mengolah, mengedit, dan menghapus daftar dari database adalah contohnya. Oleh karena itu, pengembang dan *programmer* dapat menggunakan komputer mereka untuk membuat aplikasi berbasis *web*. Sebaliknya, *MariaDB* adalah sistem manajemen database yang termasuk dalam pengembangan mandiri *MySQL*.[7]

Gambar 2.3 MySQL

4. *P* (*PHP*)

Hypertext Preprocessor (PHP) adalah bahasa pemrograman berbasis web yang digunakan untuk keperluan pada sisi server atau back end. Ini dapat digunakan untuk membuat halaman web lebih dinamis dengan menggunakan scripting sisi server. Selain itu, PHP mendukung manajemen sistem untuk Oracle, Postgresql, dan Microsoft Access, antara lain.[10]

5. *P* (*Perl*)

Perl banyak digunakan untuk pengembangan aplikasi hingga web server dan juga digunakan untuk pengembangan website pada sistem berbasis content management Sistem (CMS), seperti PHP.

Perl juga sangat fleksibel dan banyak digunakan karena dapat berjalan di dalam banyak sistem operasi.[11]

2.2.3 Laravel

Laravel adalah framework PHP berlisensi MIT yang menggunakan konsep Model-View-Controller (MVC) untuk membuat aplikasi berbasis MVP yang menggunakan PHP. Tujuan dari framework ini adalah untuk meningkatkan kualitas perangkat lunak. Melalui sintaks yang jelas, ekspresif, dan hemat waktu, Laravel membantu mengurangi biaya awal pengembangan dan pemeliharaan.[3]

Gambar 2.4 Laravel

2.2.4 Bootstrap

Bootstrap adalah paket aplikasi yang dapat digunakan saat membuat front-end website . Bootstrap adalah template desain web dengan banyak fitur yang dirancang untuk membantu pengguna dari tingkat pemula hingga berpengalaman dalam desain web. Jika Anda memiliki pemahaman dasar HTML dan CSS, Anda dapat menggunakan Bootstrap.[12]

Gambar 2.5 Bootstrap

2.2.5 UML

Unified Modeling Language (UML) adalah sebuah teknik pengembangan sistem yang menggunakan bahasa grafis sebagai alat untuk mendokumentasikan dan menypesifikasikan sistem. Pada tahun 1994, Grady Booch dan James Rumbaugh menciptakan UML untuk menggabungkan dua metodologi terkenal, Booch dan OMT. Selanjutnya, Ivar Jacobson menciptakannya.[13]

Selanjutnya, OOSE (Object Oriented Software Engineering) bergabung. OMG membuat standar UML. Beberapa diagram UML yang paling umum digunakan saat mengembangkan sistem adalah:

Use Case: Diagram dalam UML (Unifield Modeling Language)
yang digunakan untuk menggambarkan interaksi antara pengguna
(aktor) dan sistem melalui Use Case (fungsi atau fitur yang dapat
digunakan oleh aktor).

Tabel 2.1 *Use Case*

NO	Simbol	Nama	Keterangan
1.	4	Actor	Menspesifikasikan himpauan peran yang pengguna mainkan ketika berinteraksi dengan <i>Use</i> Case
2.	<< include >>	Include	Menspesifikasikan bahwa <i>Use Case</i> sumber secara eksplisit.
3.	<< extends >>	Extend	Menspesifikasikan bahwwa <i>Use Case</i> target memperluas perilaku dari <i>Use Case</i> sumber pada suaatu titik yang diberikan.
4.	→	Association	Apa yang menghubungkan antara objek satu dengan objek lainnya.
5.		System	Menspesifikasikan paket yang menampilkan sistem secara terbatas.
6.		Use Case	Abstraksi dan interaksi antara sistem dan actor

2. *Activity Diagram*: Merupakan diagram yang bersifat statis, yang menggambarkan aktivitas dari suatu sistem bisnis. Untuk simbol dari diagram aktivitas bisa dilihat pada tabel.

Tabel 2.2 Activity Diagram

NO	Simbol	Nama	Keterangan
1.		Activity	Memperlihatkan bagaimana masing-masing kelas antarmuka saling berinteraksi satu sama lain.
2.		Action	State dari sistem yang mencerminkan eksekusi dari suatu aksi.
3.		Initial Node	Bagaimana objek dibentuk atau diawali.
4.	O	Activity Final Node	Bagaimana objek dibentuk atau diakhiri.
5.	\Diamond	Decision	Digunakan untuk menggambarkan suatu keputusan atau tindakan yang harus dilakukan pada kondisi tertentu.
6.	$\rightarrow \downarrow \uparrow$	Line Connector	Digunakan untuk menghubungkan satu symbol.

3. Sequence Diagram: Adalah diagram dalam UML (Unified Modeling Language) yang digunakan untuk menggambarkan interaksi antar objek dalam suatu sistem berdasarkan urutan waktu.

Diagram ini menunjukkan bagaimana pesan dikirim antar objek untuk menyelesaikan suatu proses. atau fungsi. Diagramnya secara visual menampilkan aktor di sebelah kiri, sistem di tengah, dan database jika diperlukan.

Tabel 2.3 Sequence

NO	Simbol	Nama	Keterangan
1.	7	Actor	Menggambarkan orang yang sedang beinteraksi dengan sistem.
2.		Entity Class	Gambaran sistem sebagai landasan dalam Menyusun basis data.
3.	Ю	Boundary Class	Menangani komunikasi antar lingkungan sistem.
4.		Control Class	Bertanggung jawab terhadap kelas-kelas terhadap objek yang berisi logika
5.		Recursive	Pesan untuk dirinya.
6.	ļ	Activation	Mewakili proses durasi aktivasi sebuah operasi.
7.		Life Line	Komponen yang digambarkan garis putus terhubung dengan objek.

2.2.6 Flowchart

Jenis diagram yang menampilkan algoritma atau langkah-langkah instruksi yang berurutan dalam sebuah sistem disebut *flowchart*, atau juga disebut diagram alir. Seorang analis sistem menggunakan diagram flow untuk memberi *programmer* gambaran logis dari sistem yang akan dibangun. *Flowchart* membantu menyelesaikan masalah yang mungkin muncul selama proses pengembangan sistem. Sebuah *flowchart* biasanya digambarkan dengan simbol, dengan setiap simbol menggambarkan proses tertentu. Garis penghubung menghubungkan proses satu ke proses lainnya.[14]

Flowchart memudahkan penambahan proses baru dan membuat alur proses lebih mudah dipahami. Setelah flowchart dibuat, programmer akan menerjemahkan desain logis ke dalam program dengan menggunakan bahasa pemrograman yang telah diputuskan.[12]

Tabel 2. 4 Flowchart

NO	Simbol	Nama	Keterangan
1.		Terminator	Merupakansimbol yang digunakan untuk menentukan <i>state</i> awal dan <i>state</i> akhir suatu <i>flowchart</i> program.
2.		Preparation	Merupakan simbol yang digunakan untuk mengidentifikasi

NO	Simbol	Nama	Keterangan
			variabel-variabel yang
			akan digunakan dalam
			program.
3.		Input output	Merupakan simbol
			yang digunakan untuk
			memasukkan nilai dan
			untuk menampilkan
			nilai dari suatu
			variabel.
4.		Process	Merupakan simbol
			yang digunakan untuk
			memberikan nilai
			tertentu, apakah
			berupa rumus,
			perhitungnya counter
			atau hanya pemberian
			nilai tertentu terhadap
			suatu variabel.
5.		Predefined Process	Merupakan simbol yang
			penggunaannya seperti
			link atau menu. Jadi proses
			yang ada di dalam simbol
			ini harus di buatkan
			penjelasan flowchart
			programnya secara
			tersendiri yang terdiri dari
			terminator dan diakhiri
			dengan terminator.

NO	Simbol	Nama	Keterangan
6.		Decision	Digunakan untuk menentukan pilihan suatu kondisi (Ya atau tidak).
7.		Connector	Merupakan penghubung dari simbol yang satu ke simbol yang lain. Tampa harus menuliskan arus yang panjang.
8.		Arrow	Merupakan simbol yang digunakan untuk menentukan aliran dari sebuah <i>flowchart</i> program.