BAB I

PENDAHULUAN

1.1 Latar Belakang

Perguruan tinggi adalah lembaga yang menyediakan layanan pembelajaran pada tingkat yang lebih tinggi, yang merupakan tahap terakhir dalam pendidikan formal. Umumnya, perguruan tinggi berbentuk universitas, akademi, institusi, atau politeknik. Terdapat beberapa jenis pendidikan tinggi, yaitu vokasi, akademik, dan profesional. Berdasarkan jenjangnya, pendidikan tinggi menawarkan program diploma, sarjana, magister, spesialis, dan doktor. Perguruan tinggi diharapkan mampu memberikan pendidikan berkualitas kepada mahasiswanya sehingga menghasilkan lulusan yang kompeten di bidangnya. Di Indonesia, kualitas sebuah institusi pendidikan tinggi dinilai berdasarkan akreditasi yang diterbitkan oleh Badan Akreditasi Nasional Perguruan Tinggi (BAN-PT) [1].

Universitas Harkat Negeri sebagai institusi perguruan tinggi swasta memiliki 21 program studi, yaitu D-4 Akuntansi Sektor Publik, D-4 Teknik Informatika, D-3 Akuntansi, D-3 Desain Komunikasi Visual, D-3 Farmasi, D-4 Kebidanan, D-3 Keperawatan, D-3 Perhotelan, D-3 Teknik Elektronika, D-3 Teknik Komputer, D-3 Teknik Mesin, S1 Akuntansi, S1 Hukum, S1 Pend. Guru SD, S1 Psikologi, S1 Sains Data, S1 Ilmu Komunikasi, S1 Teknik Informatika, S1 Teknik Mesin, S1 Manajemen dan S1 Sistem Informasi yang menetapkan standar kelulusan dalam waktu 3-4 tahun (6-8 semester). Namun, masih terdapat sejumlah mahasiswa yang mengalami keterlambatan dalam menyelesaikan studinya. Kondisi ini berdampak

pada penurunan nilai akreditasi universitas karena jumlah lulusan tepat waktu menjadi salah satu parameter penilaian penting oleh lembaga akreditasi [2].

Keterlambatan kelulusan mahasiswa dapat disebabkan oleh berbagai faktor, baik akademik maupun non-akademik. Faktor-faktor tersebut meliputi indeks prestasi semester (IPS), indeks prestasi kumulatif (IPK), masa studi, status bekerja, keikutsertaan organisasi, kegagalan mata kuliah, dan jumlah cuti akademik [3]. Tingkat kelulusan tepat waktu merupakan salah satu indikator utama dalam penilaian akreditasi universitas. Oleh karena itu, dibutuhkan suatu sistem yang mampu memprediksi kelulusan mahasiswa dengan memanfaatkan data profil serta data akademik.

Berdasarkan data yang diperoleh dari Badan Administrasi Akademik (BAA), terdapat sejumlah mahasiswa Program Studi Sarjana Terapan Teknik Informatika yang tidak berhasil menyelesaikan studi dalam waktu 4 tahun. Dari data tersebut, diketahui bahwa beberapa mahasiswa mengalami keterlambatan studi karena faktor akademik seperti rendahnya nilai IPS pada semester awal, serta faktor nonakademik seperti status cuti, dan lama masa studi. Sebagai contoh, mahasiswa yang memiliki status cuti menunjukkan kecenderungan menyelesaikan studi lebih dari 4 tahun. Ini menjadi indikator bahwa variabel non-akademik memiliki peran penting dalam mempengaruhi kelulusan tepat waktu. Data ini juga menunjukkan bahwa terdapat variasi signifikan pada nilai IPS antar semester, dengan beberapa mahasiswa mengalami penurunan nilai dari semester ke semester.

Salah satu pendekatan yang dapat digunakan adalah metode klasifikasi dalam data mining, yang berfungsi untuk mengelompokkan data ke dalam kategori

tertentu berdasarkan data yang telah diberi label (supervised learning), sehingga dapat menghasilkan model prediktif yang akurat [4].

Data mining adalah proses mengolah data besar dengan menggunakan metode *statistic*, *machine learning*, dan kecerdasan buatan untuk menemukan pola dan pengetahuan bermanfaat [5]. Salah satu tekniknya yaitu klasifikasi, digunakan untuk memodelkan kelas data dan memprediksi kecenderungan, seperti pola kelulusan mahasiswa agar prediksi kelulusan dapat diketahui lebih awal dan mendukung pengambilan keputusan [6].

Sistem prediksi dihitung menggunakan metode algoritma *Decision Tree*. Sistem prediksi menggunakan metode *Decision tree* merupakan sebuah prediksi atau ramalan yang dihitung menggunakan atribut yang dimasukkan kedalam rumus tertentu dan menghasilkan sebuah pohon keputusan yang ditemukan. Metode ini menguraikan faktor-faktor kemungkinan, serta hasil akhir yang ditunjukkan pohon keputusan tersebut [7].

Berbagai penelitian sebelumnya telah menerapkan algoritma *Decision Tree* untuk memprediksi kelulusan mahasiswa dan menunjukkan hasil akurasi yang cukup tinggi, namun sebagian besar belum mengembangkan sistem prediksi yang terintegrasi dan aplikatif. Umumnya, penelitian hanya membandingkan satu atau dua algoritma klasifikasi tanpa eksplorasi metode yang lebih beragam atau optimasi parameter, serta masih berfokus pada variabel akademik semata. Padahal, faktor non-akademik seperti status cuti, keikutsertaan organisasi, status bekerja, dan latar belakang sosial ekonomi juga berpotensi mempengaruhi kelulusan, namun belum dimanfaatkan secara optimal. Selain itu, minimnya pengembangan sistem prediksi

berbasis web yang dapat digunakan langsung oleh institusi sebagai alat bantu pengambilan keputusan strategis menjadi kekurangan umum dari penelitian terdahulu. Oleh karena itu, dibutuhkan penelitian lanjutan yang tidak hanya membangun model prediksi yang akurat, tetapi juga merancang sistem prediktif berbasis website yang responsif, terintegrasi, dan memanfaatkan data nyata dari institusi pendidikan.

Decision Tree merupakan salah satu algoritma proses pembuatan keputusan yang memiliki tingkat akurasi yang tinggi dalam mengklasifikasikan data yang besar dibandingkan dengan algoritma pohon keputusan lainnya yang menghasilkan pohon keputusan yang mudah diinterpretasikan [8]. Sistem prediksi dihitung menggunakan metode hitung algoritma Decision Tree. Decision Tree adalah pemetaan mengenai alternatif pemecahan masalah yang disusun dari masalah yang ditemukan. Metode ini menguraikan faktor-faktor kemungkinan, serta hasil akhir ditunjukkan dengan pohon keputusan [7].

Berdasarkan permasalahan yang ada, maka perlu adanya suatu sistem untuk memprediksi tingkat kelulusan mahasiswa berdasarkan variabel-variabel yang relevan. Selain itu, diperlukan juga untuk algoritma yang cocok sehingga bisa menghasilkan nilai akurasi yang baik. Dengan dibuatnya sistem ini, diharapkan perguruan tinggi bisa membuat kebijakan strategis agar mahasiswa dapat lulus tepat waktu.

Oleh karena itu, penelitian ini bertujuan untuk membangun sistem prediksi kelulusan mahasiswa berbasis *website* dengan memanfaatkan data historis mahasiswa yang diperoleh dari data publik, Kaggle. Dataset ini mencakup berbagai

atribut penting, seperti nama, jenis kelamin, status mahasiswa, umur, status pernikahan, ips1 hingga ips8, ipk, dan status kelulusan. Model klasifikasi akan dikembangkan menggunakan algoritma *Decision Tree* untuk menghasilkan prediksi kelulusan yang akurat. Sistem ini diharapkan dapat membantu institusi dalam pengambilan kebijakan preventif yang efektif guna meningkatkan jumlah lulusan tepat waktu dan memperbaiki akreditasi universitas.

1.2 Pembatasan Masalah

Dalam penelitian ini, penulis memberikan Batasan terhadap ruang lingkup pembahasan guna memastikan penelitian tetap fokus dan sistem dapat dikembangkan secara optimal sesuai dengan tujuan yang ingin dicapai. Adapun batasan-batasan dalam penelitian ini adalah sebagai berikut:

- 1. Sistem dibangun berbasis *website* menggunakan *framework* Laravel untuk *frontend* dan API Flask sebagai backend untuk menjalankan proses prediksi.
- Sistem hanya dapat digunakan oleh dua jenis pengguna, yaitu admin dan mahasiswa, dengan fungsi yang berbeda sesuai peran masing-masing.

1.3 Tujuan dan Manfaat

1.3.1 Tujuan

Tujuan penelitian ini adalah pengembangan sebuah sistem atau model yang mampu mengidentifikasi potensi keterlambatan kelulusan mahasiswa secara dini. Deteksi dini ini penting agar pihak akademik dapat melakukan intervensi tepat waktu. Selain itu, sistem yang dikembangkan diharapkan memiliki tingkat kepercayaan (konfidensi) yang tinggi, sehingga hasil prediksi dapat diandalkan dan menjadi dasar pengambilan keputusan yang lebih akurat. Dengan demikian, tujuan

ini mendukung efisien proses pendidikan dan membantu peningkatan angka kelulusan tepat waktu di universitas.

1.3.2 Manfaat

Manfaat dikembangkan sistem prediksi kelulusan mahasiswa berbasis website dibagi menjadi beberapa bagian antara lain:

- 1. Mendapatkan peringatan dini untuk pencegahan
 - Membantu untuk mendeteksi secara dini mahasiswa yang berpotensi terlambat lulus, sehingga dapat dilakukan intervensi lebih cepat.
- Mendapat bahan pertimbangan untuk menyusun kebijakan preventif
 Memberikan data pendukung bagi Program Studi untuk menyusun kebijakan yang dapat mencegah keterlambatan kelulusan.
- Meminimalkan jumlah mahasiswa yang terlambat lulus
 Dengan adanya prediksi dan intervensi dini, jumlah mahasiswa yang tidak lulus
 tepat waktu dapat ditekan.
- 4. Mengoptimalkan akreditasi institusi

Tingkat kelulusan tepat waktu yang lebih tinggi berkontribusi langsung terhadap optimalisasi capaian akreditasi institusi.

1.4 Tinjauan Pustaka

Sebuah penelitian menerapkan algoritma *Decision Tree* untuk klasifikasi prediksi kelulusan mahasiswa menggunakan data 1.739 alumni dari beberapa perguruan tinggi di Palembang. Hasilnya menunjukkan akurasi 87,92%, *precision* 94,87%, dan *recall* 81,32%. Penelitian ini unggul dalam penggunaan data besar dan

validasi *K-fold*, namun belum membandingkan dengan algoritma lain maupun pengembangan sistem prediksi terintegrasi [9].

Penelitian lain menyatakan bahwa algoritma *Decision Tree* dapat digunakan untuk memprediksi tingkat kelulusan mahasiswa PTIK UIN Bukittinggi berdasarkan data akademik, demografis, dan sosial ekonomi, dengan ekurasi mencapai 85,37%. Penelitian ini telah menerapkan *cross-validation* untuk meningkatkan keandalan model, namun belum mengembangkan sistem prediksi terintegrasi [10].

Sebuah penelitian menunjukkan bahwa algoritma *Decision Tree* mampu memprediksi kelulusan mahasiswa STT Ronggolawe Cepu dengan akurasi 91%, *precision* 0,92%, dan *recall* 0,91%. Penelitian ini menggunakan atribut akademik seperti umur, jenis kelamin, jurusan, SKS, IP, dan beasiswa serta menerapkan SMOTE untuk mengatasi ketidakseimbangan data, namun belum membandingkan dengan algoritma lain maupun mengembangkan sistem prediksi terintegrasi [11].

Selain itu, penelitian lain juga menunjukkan bahwa algoritma C4.5 dapat memprediksi kelulusan mahasiswa STIA Trintis Ambon menggunakan atribut SKS dan IPK, dengan akurasi 85%, *precision* 92%, dan *recall* 93,2%. Model ini mampu mengidentifikasi faktor utama yang mempengaruhi kelulusan tepat waktu, namun belum membandingkan dengan algoritma lain maupun mengembangkan sistem prediksi terintegrasi [12].

Penelitian lain membandingkan algoritma *Decision Tree* C4.5 dan *Naïve Bayes* untuk memprediksi kelulusan mahasiswa tepat waktu menggunakan 10 atribut akademik seperti IP semester dan umur. Hasilnya menunjukkan bahwa

Decision Tree memiliki akurasi lebih tinggi (88,92%) dibandingkan Naïve Bayes (84,98%), sehingga dinilai lebih efektif dalam meningkatkan ketepatan prediksi kelulusan [13].

Selain itu, penelitian lain menunjukkan bahwa algoritma *Decision Tree* C4.5 dapat menganalisis kelulusan mahasiswa D3 Manajemen Informatika Universitas Muhammadiyah Pekajangan Pekalongan dengan akurasi 73,48%. Dengan atribut tahun masuk menjadi faktor dominan yang mempengaruhi kelulusan, sedangkan penelitian ini masih terbatas pada satu algoritma dan belum melibatkan faktor nonakademik [14].

Untuk melihat tabel penelitian terdahulu dapat dilihat pada Tabel 1.1.

Tabel 1.1. Penelitian Terdahulu

No	Judul	Hasil	Pembeda
1	Qisthiano, et al.	Algoritma Decision	Fokus pada klasifikasi
	– Penerapan	Tree mencapai akurasi	kelulusan, sedangkan
	Algoritma	87,93%, <i>precision</i>	penelitian Predict fokus pada
	Decision Tree	94,87%, dan <i>recall</i>	klasifikasi dan pengembangan
	dalam	81,32% dalam	sistem prediksi terintegrasi.
	Klasifikasi Data	memprediksi	
	Prediksi	kelulusan 1.739	
	Kelulusan	mahasiswa di	
	Mahasiswa	Palembang, namun	
		belum terintegrasi	
		dalam sistem prediksi.	

No	Judul	Hasil	Pembeda
2	Yuspita, et al. –	Algoritma Decision	Menggunakan data e-campus
	Penerapan	Tree menghasilkan	nyata dan cross-validation,
	Algoritma	akurasi 85,37% dalam	sedangkan sistem Predict
	Klasifikasi	memprediksi	menggunakan data Kaggle
	Tingkat	kelulusan mahasiswa	dengan hasil akurasi sebesar
	Kelulusan	berdasarkan data	88,16% serta dilengkapi
	Mahasiswa	akademik, demografis,	sistem prediksi yang
	Menggunakan	dan sosial ekonomi	terintegrasi berbasis web yang
	Rapidminer	dari 164 mahasiswa.	mendukung pengambilan
			keputusan perguruan tinggi.
3	Berlian, et al. –	Akurasi 91%,	Menggunakan data sampel
	Penerapan	precision 0,92%,	terbatas dan belum berbasis
	Machine	recall 0,91%; model	sistem terintegrasi, sedangkan
	Learning untuk	mampu menangani	penelitian Predict
	Memprediksi	ketidakseimbangan	mengembangkan sistem
	Kelulusan	data dengan SMOTE	prediksi berbasis web dengan
	Mahasiswa	dan menghasilkan	data Kaggle yang lebih luas,
	Menggunakan	akurasi tinggi.	dilengkapi fitur report data
	Algoritma		pada admin serta filter
	Decision Tree		berdasarkan tahun dan
			program studi.

No	Judul	Hasil	Pembeda
4	Daniel Hartono	Algoritma C4.5	Menggunakan data asli
	Renyut, et al. –	menghasilkan akurasi	institusi dengan hasil akurat
	Prediksi	85%, precision 92%,	melalui pohon keputusan,
	Kelulusan	dan <i>recall</i> 93,2%,	namun belum memiliki
	Mahasiswa	menunjukkan model	implementasi sistem
	Menggunakan	cukup baik dalam	terintegrasi berbasis web
	Algoritma C.45	klasifikasi kelulusan	seperti pada penelitian Predict
	(Studi Kasus,	tepat waktu.	yang dilengkapi fitur prediksi
	Sekolah Tinggi		keseluruhan mahasiswa pada
	Ilmu		admin.
	Administrasi		
	Trintis Ambon)		
5	Wahyudi, et al.	Algoritma Decision	Hanya berupa eksperimen
	– Prediksi	Tree C4.5	algoritma tanpa implementasi
	Kelulusan	menghasilkan akurasi	sistem, sedangkan penelitian
	Mahasiswa	88,92%, lebih tinggi	Predict mengembangkan
	Tepat Waktu	dibandingkan Naïve	sistem prediksi yang
	Menggunakan	Bayes sebesar 84,98%,	dilengkapi fitur prediksi bagi
	Metode	menggunakan 10	mahasiswa dan dapat melihat
	Decision Tree	atribut akademik dan	hasil riwayat prediksinya.
	dan <i>Naïve</i>	validasi K-Fold.	
	Bayes		

No	Judul	Hasil	Pembeda
6	Fatkhudin, et al.	Algoritma Decision	Hanya menggunakan variabel
	– Algoritma	Tree C4.5	akademik terbatas, sedangkan
	Decision Tree	menghasilkan akurasi	penelitian Predict menambah
	C.45 Dalam	73,48%, dengan tahun	jumlah variabel akademik dan
	Analisis	masuk sebagai faktor	non-akademik.
	Kelulusan	utama yang	
	Mahasiswa	mempengaruhi	
	Program Studi	kelulusan mahasiswa.	
	Manajemen		
	Informatika		
	UMPP		

Berdasarkan tinjauan pustaka terhadap penelitian terdahulu, penelitian ini bertujuan untuk mengembangkan sistem prediksi kelulusan mahasiswa berbasis website yang terintegrasi dan mudah digunakan. Penelitian sebelumnya menunjukkan bahwa algoritma Decision Tree mampu memberikan hasil prediksi dengan tingkat akurasi yang tinggi, namun sebagian besar masih terbatas pada tahap eksperimen dan belum diterapkan dalam bentuk sistem yang dimanfaatkan langsung oleh perguruan tinggi. Oleh karena itu, penelitian ini melakukan pengembangan lebih lanjut dengan membangun sistem berbasis website yang dilengkapi dengan fitur prediksi bagi mahasiswa dan admin. Mahasiswa dapat melakukan prediksi secara mandiri serta melihat riwayat hasil prediksinya,

sedangkan admin dapat melakukan prediksi secara keseluruhan, memantau hasil prediksi per tahun dan per program studi, serta menghasilkan laporan *(report)* data. Dengan adanya sistem ini, perguruan tinggi diharapkan dapat lebih mudah dalam memantau dan mengevaluasi potensi kelulusan mahasiswa setiap tahunnya.

1.5 Data Penelitian

Penelitian ini menggunakan dataset data historis mahasiswa yang diperoleh dari Kaggle (https://www.kaggle.com/datasets/hafizhathallah/kelulusan-mahasiswa/data). Dataset ini memuat informasi lengkap yang relevan untuk menganalisis serta memprediksi kelulusan mahasiswa. Data yang digunakan mencakup atribut-atribut penting yang berhubungan dengan informasi demografi maupun riwayat akademik mahasiswa. Atribut-atribut tersebut kemudian dijadikan dasar dalam membangun model prediksi untuk memprediksi kelulusan mahasiswa.

1.5.1 Data Historis Mahasiswa

Dataset mahasiswa yang digunakan dalam penelitian ini memiliki atribut yang menggambarkan karekteristik serta performa akademik mahasiswa. Atribut Nama berisi nama lengkap mahasiswa, Jenis Kelamin menunjukkan kategori jenis kelamin mahasiswa yaitu Laki-laki atau Perempuan. Atribut Status Mahsiswa memuat informasi mengenai status pekerjaan mahasiswa selama menempuh pendidikan, misalnya bekerja atau hanya berstatus mahasiswa.

Selanjutnya, terdapat atribut umur yang berisi usia mahasiswa, serta status nikah yang menunjukkan status pernikahan mahasiswa dengan kategori belum menikah atau menikah. Untuk mengukur performa akademik, dataset ini juga memuat Indeks Prestasi Semester (IPS) mulai dari semester 1 hingga semester 8.

Dari seluruh nilai IPS tersebut kemudian dihitung Indeks Prestasi Kumulatif (IPK) sebagai nilai rata-rata keseluruhan akademik mahasiswa.

Atribut akhir adalah status kelulusan yang menjadi variabel target dalam penelitian ini, dengan kategori tepat waktu atau terlambat. Atribut ini digunakan sebagai acuan dalam proses analisis dan prediksi kelulusan mahasiswa.

1.5.2 Alat Penelitian

Penelitian ini menggunakan berbagai perangkat keras dan perangkat lunak untuk mendukung proses pengumpulan data, pemodelan, dan pengembangan aplikasi. Berikut adalah tabel yang mencakup alat penelitian yang digunakan disajikan pada Tabel 1.2.

Tabel 1.2. Alat Penelitian

No	Perangkat Keras Alat Penelitian		
	Nama Alat	Fungsi	
1.	Laptop dengan	Sebagai perangkat utama untuk	
	spesifikasi mendukung	mengembangkan, menguji, dan menjalankan	
		aplikasi.	
2.	Ruang Penyimpanan	Sebagai komponen penyimpanan untuk	
	(SSD)	menyimpan data, aset proyek, source code,	
		serta file model dan dataset.	
3.	RAM minimum 4GB	Mendukung proses komputasi dan pemrosesan	
		data secara efisien selama pengembangan	
		aplikasi.	

No	Perangkat Lunak Alat Penelitian		
110	Nama Alat	Fungsi	
1.	Windows OS	Sebagai operasi utama pada laptop/komputer	
		pengembang.	
2.	Google Colaboraty	Lingkungan pemrograman berbasis cloud	
		untuk pemrosesan dataset dan pelatihan	
		model decision Tree menggunakan python.	
3.	Visual Studio Code	Sebagai aplikasi code editor yang digunakan	
		untuk membuat aplikasi.	
4.	MySQL	Digunakan sebagai sistem manajemen basis	
		data untuk menyimpan data mahasiswa dan	
		hasil prediksi.	
5.	Mozila Firefox/Chrome	Digunakan untuk menguji dan menampilkan	
		antarmuka aplikasi berbasis web.	
6.	Flask	Digunakan untuk menghubungkan model	
		prediksi dengan antarmuka web, serta	
		menangani proses routing, input data, dan	
		penampilan hasil prediksi kepada pengguna.	
7.	Pandas	Library Python untuk manipulasi dan analisis	
		data.	

8.	Python	Python digunakan untuk proses pengolahan
		data, pelatihan model machine learning
		(Decision Tree).