BABI

PENDAHULUAN

1.1 Latar Belakang

Indonesia adalah negara yang memiliki banyak sumber daya alam, termasuk rempah-rempah. Rempah-rempah adalah tanaman yang memiliki rasa dan aroma unik, biasanya digunakan sebagai bahan bumbu untuk meningkatkan cita rasa masakan. Selain digunakan dalam masakan, rempah-rempah juga sering dijadikan bahan dasar untuk obat-obatan herbal. Rempah-rempah dapat diambil dari berbagai bagian tumbuhan, seperti batang, daun, umbi, rimpang, akar, biji, bunga atau bagian lainnya [1]. Rempah-rempah sudah lama digunakan dan menjadi bagian dari budaya, pengobatan serta masakan tradisional Indonesia. Sekarang ini, rempah-rempah tidak hanya dipakai untuk kebutuhan sehari-hari, tetapi juga dipakai dalam berbagai industri, seperti makanan, minuman, kecantikan dan kesehatan [2]. Hal ini menunjukkan bahwa rempah-rempah memiliki nilai yang sangat tinggi serta merupakan bagian dari kekayaan alam yang perlu dijaga dan dikembangkan secara berkelanjutan agar terus memberikan manfaat.

Seiring berjalannya waktu, semakin banyak anak muda yang kurang mengenal rempah-rempah khas Indonesia. Berdasarkan hasil dari sebuah penelitian, sekitar 56,25% generasi muda diketahui memiliki tingkat pengetahuan yang rendah terhadap rempah-rempah khas Indonesia [3]. Salah satu kelompok yang paling terpengaruh oleh kondisi ini adalah Generasi Z,

yaitu mereka yang lahir antara tahun 1997 hingga 2012. Generasi ini merupakan generasi pertama yang tumbuh di era digital dan internet, sehingga terbiasa dengan kecepatan informasi, kemudahan teknologi, serta cenderung menyukai media yang praktis dan interaktif [4]. Hal ini membuat banyak generasi muda lebih memilih menggunakan rempah instan karena dinilai lebih praktis dan cepat dibandingkan meracik rempah asli. Namun, kebiasaan tersebut secara perlahan dapat mengurangi pengetahuan mereka mengenai karakteristik rempah, seperti nama, bentuk dan manfaat dari setiap jenis rempah yang ada [5]. Jika kondisi tersebut terus dibiarkan, generasi muda, khususnya Generasi Z, berisiko kehilangan kesempatan untuk mengenal dan memanfaatkan potensi rempah-rempah secara optimal. Kondisi tersebut dapat menyebabkan pengetahuan tentang rempah semakin berkurang pemanfaatannya dalam kehidupan sehari-hari menjadi terbatas, khususnya pada aspek kesehatan dan kuliner. Oleh karena itu, diperlukan media pengenalan yang tepat, efektif dan akurat untuk meningkatkan pemahaman generasi muda, khususnya Generasi Z, terhadap berbagai jenis rempah beserta pemanfaatannya dalam kehidupan sehari-hari.

Sebagai upaya mengatasi permasalahan tersebut, diperlukan media yang tidak hanya informatif, tetapi juga interaktif dan mudah diakses oleh generasi muda yang terbiasa dengan perkembangan teknologi. Salah satu pendekatan yang dapat diterapkan untuk memenuhi kebutuhan tersebut adalah pengembangan media berbasis web yang didukung dengan teknologi klasifikasi citra menggunakan *Convolutional Neural Network* (*CNN*).

Convolutional Neural Network (CNN) merupakan salah satu metode kecerdasan buatan (Artificial Intelligence) berbasis deep learning yang mampu mengenali pola visual pada gambar dengan tingkat akurasi tinggi. Pendekatan ini tepat digunakan dalam pengenalan jenis rempah berdasarkan ciri-ciri visualnya, karena CNN bekerja dengan mengekstraksi fitur dari gambar melalui lapisan konvolusi yang mendeteksi pola tertentu, seperti garis, tepi, atau tekstur, kemudian melakukan klasifikasi berdasarkan pola yang telah dipelajari [6].

Sistem klasifikasi rempah dengan metode *Convolutional Neural Network* (*CNN*) dikembangkan dalam bentuk *website* agar lebih mudah digunakan serta mampu menjangkau lebih banyak pengguna. *Website* dipilih karena dapat diakses melalui berbagai perangkat, seperti ponsel maupun komputer, tanpa memerlukan instalasi tambahan. Hal tersebut menjadikan sistem lebih praktis dan mudah diakses, terutama bagi generasi muda yang terbiasa dengan akses cepat dan kemudahan dalam memperoleh informasi digital. Sistem ini dikembangkan untuk mempermudah generasi muda, khususnya Generasi Z dalam mengenali berbagai jenis rempah secara interaktif. Hasil klasifikasi citra dari model *CNN* dapat ditampilkan secara langsung melalui antarmuka yang sederhana dan mudah digunakan [7]. Keterbaruan dari penelitian ini membandingkan empat arsitektur *CNN* yaitu *MobileNetV2*, *ResNet50V2*, *InceptionV3* dan *DenseNet121*, dalam proses klasifikasi gambar rempahrempah. Selain itu, penelitian ini juga menambahkan *dataset* baru yang

mencakup 31 jenis rempah dan 1 kelas bukan rempah, yang menjadi salah satu pembeda dibandingkan dengan penelitian-penelitian sebelumnya.

Selain fitur utama berupa klasifikasi citra rempah, sistem ini dilengkapi dengan fitur pendukung seperti artikel informatif, rekomendasi resep dan riwayat berdasarkan hasil klasifikasi. Fitur-fitur tersebut dirancang untuk meningkatkan interaksi dan pengalaman pengguna, serta memberikan informasi tambahan mengenai jenis rempah, manfaat dan pemanfaatannya dalam kehidupan sehari-hari. Dengan mengimplementasikan metode *Convolutional Neural Network (CNN)* pada platform berbasis web, sistem ini diharapkan dapat menjadi media pengenalan rempah yang akurat dan edukatif.

1.2 Rumusan Masalah

- 1. Bagaimana mengimplementasikan model *Convolutional Neural*Network (CNN) pada sistem berbasis website untuk

 mengklasifikasikan jenis-jenis rempah berdasarkan citra gambar?
- 2. Bagaimana mengembangkan sistem berbasis website yang mampu menyediakan informasi mengenai jenis-jenis rempah dan pemanfaatannya?
- 3. Bagaimana sistem berbasis *website* dapat membantu meningkatkan pemahaman pengguna dalam mengenali dan mengidentifikasi jenisjenis rempah?

1.3 Batasan Masalah

- 1. Penelitian ini hanya berfokus pada pengembangan sistem berbasis *website* untuk melakukan klasifikasi jenis-jenis rempah.
- 2. *Dataset* yang digunakan terdiri dari 31 jenis rempah dan 1 kelas bukan rempah, sehingga tidak mencakup keseluruhan jenis rempah yang ada.
- 3. Pengembangan aplikasi tidak mencakup fitur tambahan seperti toko *online* ataupun transaksi jual beli rempah.

1.4 Tujuan dan Manfaat

1.4.1 Tujuan Penelitian

Penelitian ini bertujuan mengembangkan sistem berbasis website yang dilengkapi dengan model Convolutional Neural Network (CNN) untuk mengklasifikasikan jenis rempah dari gambar yang diunggah maupun diambil secara langsung oleh kamera. Sistem ini diharapkan berfungsi sebagai media edukatif yang dapat membantu pengguna, khususnya generasi muda, Generasi Z, dalam mengidentifikasi rempah di sekitar mereka, serta memperluas pemahaman mengenai jenis dan pemanfaatannya.

1.4.2 Manfaat Penelitian

Manfaat dari penelitian ini adalah sebagai berikut:

1. Membantu pengguna dalam mengklasifikasikan jenis rempah secara akurat dan interaktif melalui sistem berbasis *website*.

- Meningkatkan kesadaran dan pemahaman generasi muda, khususnya Generasi Z, terhadap rempah dan pemanfaatannya dalam kehidupan sehari-hari.
- 3. Memberikan kontribusi dalam penerapan teknologi klasifikasi citra berbasis *Convolutional Neural Network (CNN)* pada bidang pengenalan rempah.

1.5 Tinjauan Pustaka

Beberapa penelitian mengenai klasifikasi rempah dengan metode *Convolutional Neural Network (CNN)* telah banyak dilakukan, namun lebih menekankan pada aspek model. Penelitian ini difokuskan pada pengembangan sistem berbasis web yang mengimplementasikan model *CNN* untuk klasifikasi rempah-rempah.

Penelitian yang dilakukan oleh I. Suandana, Asriyanik dan W. Apriandari tentang Pemanfaatan CNN (Convolutional Neural Network) dan MobileNetV2 dalam Klasifikasi Rempah-rempah Lokal di Indonesia [8]. Penelitian ini dilatarbelakangi oleh sulitnya mengidentifikasi jenis rempah, kurangnya sumber bacaan, serta keterbatasan akses kepada ahli rempah/herbal untuk memperdalam pemahaman. Dataset yang digunakan terdiri dari 16 jenis rempah dengan total 5.111 citra yang diperoleh dari foto manual dan sumber publik. Data citra diproses melalui resize, normalisasi dan augmentasi, kemudian dilatih dengan MobileNetV2. Hasil pelatihan menunjukkan performa sangat tinggi dengan akurasi validasi

mencapai 99,96%, *precision*, *recall* dan *F1-score* masing-masing 0,99, sehingga model terbukti efektif dalam mengenali rempah lokal. Sistem yang dibangun juga telah diimplementasikan pada situs web sederhana untuk memudahkan pengguna dalam melakukan klasifikasi rempah. Namun, penelitian tersebut masih terbatas pada jumlah *dataset* yang sedikit, sedangkan penelitian ini menggunakan *dataset* lebih besar dengan 31 jenis rempah dan 1 kelas bukan rempah.

Penelitian lain yang dilakukan oleh Y. Hatur dan A. Sabri tentang Transfer Learning Model Pralatih MobileNetV2 dan DenseNet121 untuk Klasifikasi Tanaman Rempah [9]. Penelitian ini menggunakan dataset sebanyak 638 citra dari lima kelas, yaitu jahe, kencur, kunyit, lengkuas dan temulawak. Model MobileNetV2 dan DenseNet121 dilatih selama 30 epoch dengan optimizer Adam, batch size 64 dan fungsi loss categorical crossentropy. Hasil pengujian menunjukkan bahwa DenseNet121 memiliki kinerja lebih baik secara konsisten dibandingkan MobileNetV2, dengan akurasi, precision, recall dan F1-score yang lebih tinggi. MobileNetV2 menunjukkan peningkatan akurasi yang cepat pada epoch awal, tetapi mengalami overfitting pada epoch berikutnya. Sebaliknya, DenseNet121 mampu mempertahankan peningkatan akurasi hingga epoch ke-30. Dengan demikian, penelitian ini menyimpulkan bahwa DenseNet121 lebih unggul dalam mengenali lima jenis rempah dibandingkan MobileNetV2. Akan tetapi, penelitian tersebut masih terbatas pada klasifikasi berbasis model tanpa pengembangan ke arah sistem aplikasi interaktif. Sementara itu, penelitian ini berfokus pada pengembangan sistem berbasis web yang dilengkapi fitur edukatif berupa artikel informatif, rekomendasi resep dan riwayat klasifikasi.

Penelitian lainnya juga yang dilakukan oleh S. Hermawan dan N. Agustina melakukan penelitian tentang Implementasi Convolutional Neural Network untuk Klasifikasi Rempah-rempah Khas Indonesia [10]. Penelitian ini bertujuan meningkatkan pengetahuan masyarakat mengenai jenis rempah melalui klasifikasi citra gambar menggunakan CNN. Fokus penelitian mencakup tujuh jenis rempah, yaitu andaliman, cabe jawa, cengkeh, kapulaga, kayu manis, lada dan pala, dengan masing-masing kelas menggunakan 24 citra latih. Model CNN yang digunakan berbasis arsitektur VGG16 dengan preprocessing citra berukuran 224×224 piksel dan pembagian *dataset* dengan rasio 8:1:1. Hasil pelatihan menunjukkan akurasi mencapai 99% dan validasi 60%, dengan train loss sebesar 0,6% dan validation loss sebesar 1,5%. Model yang dihasilkan kemudian dideploy menggunakan platform web berbasis Streamlit, yang menyediakan fitur unggah gambar dan drag and drop untuk memudahkan klasifikasi. Meskipun demikian, penelitian tersebut masih terbatas pada fitur unggah gambar dari galeri, sedangkan penelitian terbaru akan menambahkan fitur pengambilan gambar secara langsung melalui kamera perangkat.

Selanjutnya penelitian yang dilakukan oleh N. Pamungkas dan A. Suhendar tentang Penerapan Metode *Convolutional Neural Network* (*CNN*) dengan Arsitektur *ResNet50V2* untuk Klasifikasi Penyakit

Tanaman Apel Berdasarkan Citra Daun [11]. Penelitian ini bertujuan mendeteksi penyakit apel secara dini dengan empat kondisi daun, yaitu tiga jenis penyakit umum dan satu kondisi sehat. *Dataset* yang digunakan terdiri dari 150 citra dari perkebunan apel dan 3.071 citra dari *Kaggle*, yang kemudian diproses melalui tahap *preprocessing* dan augmentasi. Model *ResNet50V2* dilatih selama 10 *epoch* dan menghasilkan akurasi 99,01% dengan *precision*, *recall* dan *F1-score* yang konsisten tinggi pada semua kelas. Hasil tersebut menunjukkan bahwa *ResNet50V2* memiliki kinerja yang baik untuk klasifikasi citra. Oleh karena itu, arsitektur ini juga akan digunakan dalam penelitian ini sebagai salah satu model pembanding bersama *MobileNetV2*, *InceptionV3* dan *DenseNet121*, dengan fokus berbeda yaitu pada pengembangan sistem berbasis web untuk klasifikasi rempah serta integrasi fitur edukatif.

Kemudian penelitian yang dilakukan oleh M. Sanjaya dan E. Nurraharjo tentang Deteksi Jenis Rempah-rempah Menggunakan Metode *Convolutional Neural Network* Secara *Real Time* [12]. Penelitian ini bertujuan mengembangkan sistem berbasis aplikasi untuk membantu masyarakat, khususnya generasi muda, dalam mengenali berbagai jenis rempah. *Dataset* yang digunakan terdiri dari 1.800 citra dengan 12 jenis rempah, antara lain kunyit, pala, kayu manis, jahe, cengkeh, kemiri, kencur, vanili, kapulaga, kayu secang, ketumbar dan lengkuas. Proses klasifikasi dilakukan menggunakan *CNN* dengan *framework TensorFlow*, di mana model dilatih hingga 50 *epoch* dan dikonversi ke dalam format

TFLite untuk diintegrasikan ke aplikasi mobile. Hasil pengujian menunjukkan akurasi rata-rata sebesar 60%, dengan nilai tertinggi 86% pada beberapa kelas rempah. Sistem yang dikembangkan mampu mendeteksi rempah secara real time melalui perangkat mobile, tetapi masih terbatas pada fitur sederhana. Sementara itu, penelitian ini berfokus pada pengembangan sistem berbasis web yang dilengkapi dengan dashboard dan riwayat klasifikasi.

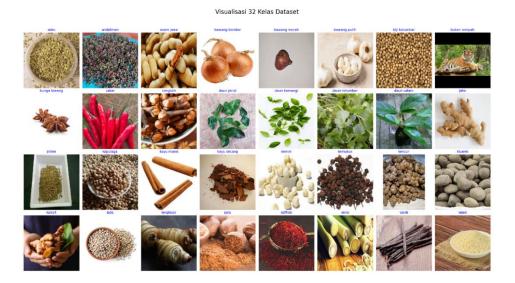
Selain itu penelitian lain yang dilakukan oleh Darmatasia dan A. Syafar tentang Implementasi Convolutional Neural Network untuk Klasifikasi Tanaman Rimpang Secara Virtual [13]. Penelitian ini bertujuan memudahkan masyarakat dalam membedakan jenis tanaman rimpang yang memiliki bentuk dan warna hampir serupa. Dataset yang digunakan terdiri dari 5 kelas rempah rimpang, yaitu kunyit, jahe, laos, kencur dan kunci, dengan masing-masing kelas terdiri dari 90 citra latih dan 10 citra uji. Penelitian ini membandingkan tiga arsitektur CNN, yaitu MobileNet, Inception V3 dan VGG19. Hasil penelitian menunjukkan bahwa MobileNet dan InceptionV3 mencapai akurasi tertinggi sebesar 98%, sementara VGG19 memperoleh akurasi 88%. MobileNet dinilai lebih efisien karena memiliki waktu komputasi paling cepat dibandingkan dengan arsitektur lainnya. Penelitian tersebut hanya membandingkan tiga arsitektur model dan belum dikembangkan ke dalam bentuk implementasi sistem. Sementara itu, penelitian ini akan membandingkan empat arsitektur CNN, yaitu MobileNetV2, ResNet50V2, InceptionV3 dan DenseNet121, untuk menentukan model dengan kinerja terbaik dan dapat diimplementasikan ke dalam sistem berbasis web.

Tabel 1. 1 Gap Penelitian

No	Peneliti	Judul	Hasil	Kelemahan	Pembeda
1	Suandana	Pemanfaat	MobileN	Dataset	Mengguna
	dkk. (2024)	an CNN	etV2	yang	kan
		(Convoluti	mencapa	digunakan	dataset
		onal	i akurasi	terbatas	lebih
		Neural	validasi	pada 16	banyak,
		Network)	99,96%	jenis	terdiri dari
		dan	dengan	rempah, dan	31 jenis
		MobileNet	precision	sistem yang	rempah
		V2 dalam	, recall	dikembangk	dan 1 kelas
		Klasifikasi	dan F1-	an masih	bukan
		Rempah-	score	berupa web	rempah.
		rempah	masing-	sederhana.	
		Lokal di	masing		
		Indonesia	0,99.		
			Model		
			diimple		
			mentasik		
			an pada		
			situs web		
			sederhan		
			a.		
2	Hatur &	Transfer	DenseNe	Penelitian	Fokus
	Sabri (2024)	Learning	t121	yang	penelitian
		Model	menunju	dilakukan	ini adalah
		Pralatih	kkan	hanya	mengemba
		MobileNet	kinerja	berfokus	ngkan

		1/2 1		1.	
		V2 dan	yang	pada	sistem
		DenseNet1	lebih	perbandinga	web
		21 untuk	baik	n kinerja	dengan
		Klasifikasi	dibandin	model dan	fitur
		Tanaman	gkan	belum	edukatif,
		Rempah	MobileN	dikembangk	meliputi,
			etV2	an menjadi	artikel
			pada	sistem	informatif,
			lima	aplikasi.	rekomend
			jenis		asi resep
			rempah,		dan
			serta		riwayat
			lebih		klasifikasi.
			konsisten		
			hingga		
			epoch		
			ke-30.		
3	Hermawan	Implement	Model	Fitur yang	Penelitian
	& Agustina	asi	menghas	tersedia	terbaru
	(2023)	Convoluti	ilkan	masih	akan
		onal	akurasi	terbatas	menambah
		Neural	sebesar	pada	kan fitur
		Network	99%	unggah	pengambil
		untuk	dengan	gambar dari	an gambar
		Klasifikasi	akurasi	galeri,	secara
		Rempah-	validasi	belum ada	langsung
		rempah	60%.	tambahan	melalui
		Khas	Sistem	fitur seperti	kamera
		Indonesia	diimple	pengambila	perangkat.
			mentasik	n gambar	
			an	secara	
				l	

			menggun	langsung	
			akan	melalui	
			Streamlit	kamera.	
			dengan		
			fitur		
			unggah		
			gambar		
			dan drag		
			and drop.		
4	Pamungkas	Penerapan	Model	Penelitian	Penelitian
	& Suhendar	Metode	ResNet5	yang	ini akan
	(2024)	Convoluti	0V2	dilakukan	mengguna
		onal	mencapa	hanya	kan
		Neural	i akurasi	menggunak	ResNet50
		Network	sebesar	an arsitektur	V2 sebagai
		dengan	99,01%	ResNet50V2	salah satu
		Arsitektur	dengan	dengan	pembandi
		ResNet50	nilai	fokus pada	ng, dengan
		V2 untuk	precision	deteksi	dataset
		Klasifikasi	, recall	penyakit	mencakup
		Penyakit	dan F1-	daun apel,	daun, biji,
		Tanaman	score	sehingga	batang dan
		Apel	konsisten	dataset	akar
		Berdasark	tinggi.	terbatas	rempah,
		an Citra		pada citra	serta web
		Daun		daun.	interaktif.
5	Sanjaya &	Deteksi	Penelitia	Penelitian	Penelitian
	Nurraharjo	Jenis	n ini	ini masih	akan
	(2023)	Rempah-	menghas	terbatas	berfokus
		rempah	ilkan	pada	mengemba


		3.6	1.1 .	1.1 .	
		Mengguna	aplikasi	aplikasi	ngkan
		kan	mobile	mobile	sistem
		Metode	berbasis	dengan fitur	berbasis
		Convoluti	CNN	sederhana,	web yang
		onal	untuk	tanpa	dilengkapi
		Neural	klasifika	adanya	fitur login
		Network	si <i>real</i>	menu	dan
		Secara	time 12	dashboard,	register,
		Real Time	jenis	autentikasi	menu
			rempah	pengguna,	dashboard
			dengan	maupun	serta
			akurasi	penyimpana	riwayat
			rata-rata	n riwayat	klasifikasi.
			60% dan	klasifikasi.	
			tertinggi		
			86%.		
6	Darmatasia	Implement	MobileN	Penelitian	Penelitian
	& Syafar	asi	<i>et</i> dan	yang	ini akan
	(2023)	Convoluti	Inception	dilakukan	membandi
		onal	V3	hanya	ngkan
		Neural	mencapa	membandin	empat
		Network	i akurasi	gkan tiga	arsitektur
		untuk	98%,	arsitektur	CNN
		Klasifikasi	sedangka	CNN dan	(MobileNe
		Tanaman	n VGG19	belum	tV2,
		Rimpang	hanya	dikembangk	ResNet50
		Secara	88%,	an ke dalam	V2,
		Virtual	MobileN	bentuk	InceptionV
			<i>et</i> dinilai	implementa	3,
			paling	si sistem.	DenseNet
			efisien		<i>121</i>) untuk

	karena	menei	ntuka
	waktu	n n	nodel
	komputa	terbai	k
	si lebih	dan	
	cepat.	meng	impl
		ement	tasik
		an	pada
		sisten	1
		web.	

Berdasarkan penelitian terdahulu, Convolutional Neural Network (CNN) terbukti efektif untuk klasifikasi citra rempah. Namun, sebagian besar penelitian masih terbatas pada jumlah kelas sedikit, fitur sederhana dan belum diimplementasikan ke dalam sistem interaktif yang dapat diakses secara luas, khususnya oleh generasi muda, Generasi Z. Oleh karena itu, penelitian ini tidak hanya membandingkan empat arsitektur CNNuntuk memperoleh kinerja terbaik, tetapi juga mengimplementasikannya ke dalam sistem berbasis web dengan fitur interaktif, seperti pengambilan gambar melalui kamera, artikel informatif, rekomendasi resep dan riwayat klasifikasi. Dengan demikian, sistem yang dikembangkan diharapkan dapat membantu pengguna mengenal rempah secara lebih mudah dan efektif.

1.6 Data Penelitian

Data yang digunakan berasal dari berbagai sumber, antara lain *Kaggle, Google Images*, serta hasil pengambilan gambar secara langsung yang telah diberi label. Data tersebut mencakup berbagai jenis rempah, seperti Adas, Andaliman, Asam Jawa, Bawang Bombai, Bawang Merah, Bawang Putih, Biji Ketumbar, Bunga Lawang, Cabai, Cengkeh, Daun Jeruk, Daun Kemangi, Daun Ketumbar, Daun Salam, Jahe, Jinten, Kapulaga, Kayu Manis, Kayu Secang, Kemiri, Kemukus, Kencur, Kluwek, Kunyit, Lada, Lengkuas, Pala, Saffron, Serai, Vanili, Wijen dan Bukan Rempah. *Dataset* terdiri dari total 6.720 gambar, dengan masingmasing kelas berjumlah 210 gambar. *Dataset* ini dibagi menjadi 70% untuk pelatihan, 15% untuk validasi dan 15% untuk pengujian. Seluruh gambar menggunakan format *JPG*. Tampilan *dataset* yang digunakan dapat dilihat pada gambar 1.1.

Gambar 1. 1 Dataset Rempah dan Bukan Rempah

1.7 Alat Penelitian

Alat penelitian meliputi perangkat keras dan perangkat lunak yang digunakan untuk melakukan pengolahan data, pelatihan model dan pengembangan aplikasi yang dapat dilihat pada tabel berikut:

Tabel 1. 2 Alat Penelitian

No	Alat	Kebutuhan	Fungsi
1.	Figma	Design Tools	Membuat desain
			prototipe dari
			aplikasi
2.	Google Colab	Google	Tools untuk melatih
		Colaboratory	model
			menggunakan GPU
			berbasis cloud
3.	Visual Studio Code	Text Editor	Software untuk
			menulis dan
			mengedit kode
			program
4.	Laptop dengan	Device	Perangkat untuk
	spesifikasi:		menunjang
	- RAM: 4 GB		pembuatan aplikasi
	- Storage: 256		
	GB		
	- Processor:		
	Intel Celeron		
	N4020		
5.	Smartphone RAM 8	Device	Perangkat untuk
	GB, ROM 256 GB		menunjang
			pembuatan aplikasi

6.	Library Tensorflow,	Library Python	Kode program
	NumPy, Flask dll		tambahan yang
			digunakan dalam
			kebutuhan tertentu
7.	MySQL	DBMS (Database	Database untuk
		Management	menyimpan dan
		System)	mengelola data
			aplikasi
8.	XAMPP & Ngrok	Local Server	Untuk membuat
			server lokal di
			komputer
9.	Postman	Software Testing	Untuk menguji dan
			mengelola route
			API
10.	Katalon Studio	Software Testing	Untuk otomatisasi
			pengujian
			fungsionalitas
			aplikasi