

PROSES KECEPATAN PEMOTONGAN DAN *GRAFIR* MENGGUNAKAN MESIN LASER *CUTTING* CO₂ 132560WG 60 WATT MATERIAL KAYU MDF 3 MM

LAPORAN TUGAS AKHIR

Disusun oleh: Nama : Risky Ramadhon NIM : 21021010

PROGRAM STUDI DIII TEKNIK MESIN POLITEKNIK HARAPAN BERSAMA 2024

HALAMAN PERSETUJUAN LAPORAN TUGAS AKHIR

PROSES KECEPATAN PEMOTONGAN DAN GRAFIR MENGGUNAKAN MESIN LASER *CUTTING* CO₂ 132560WG 60 WATT MATERIAL KAYU MDF 3 MM

Sebagai salah satu syarat mengikuti Sidang Tugas Akhir

Disusun oleh: Nama: Risky Ramadhon NIM: 21021010

Telah diperiksa dan dikoreksi dengan baik dan cermat karena itu Pembimbing menyetujui mahasiswa tersebut untuk diuji

Tegal, 30 Juli 2024

Pembimbing 1

Amin Nur Akhmadi, M.T NIDN. 0622048302

Pembimbing 2

Andre Budhi Hendrawan, M.T NIDN. 0607128303

Mengetahui, Ketua Program Studi DIII Teknik Mesin Politeknik Harapan Bersama

M. Taufik Qurohman, M.Pd NIPY. 08.015.265

HALAMAN PENGESAHAN LAPORAN TUGAS AKHIR

Proses kecepatan pemotongan dan grafir menggunakan mesin laser <i>cutting</i> co ₂ 132560WG 60 watt material kayu mdf 3 mm		
Risky Ramadhon		
21021010		
DIII Teknik Mesin		
Diploma Tiga (DIII)		

Dinyatakan LULUS setelah dipertahankan di depan Tim Penguji Sidang Tugas Akhir Program Studi DIII Teknik Mesin Politeknik Harapan Bersama Tegal

Tegal, 21. 4945+45. 2024

- 1 Ketua Penguji Faqih Fatkhurrozak, M.T NIDN.0616079002
- 2 Anggota Penguji 1 M. Khumaidi Usman, M.Eng NIDN.0608058601
- 3 Anggota Penguji 2
 - Amin Nur Akhmadi, M.T NIDN. 0622048302

Tanda tangar

Tanda tangan

Tanda tangan

Mengetahui, Ketua Program Studi DIII Teknik Mesin Politeknik Harapan Bersama M. Taufik Qurohman, M.Pd NIPY. 08.015.265

HALAMAN PERNYATAAN

Yang bertanda tangan di bawah ini:

Nama	:	Risky Ramadhon
NIM	:	21021010
Judul Tugas Akhir	:	Proses kecepatan pemotongan dan grafir menggunakan
		mesin laser cutting co2 132560WG 60 watt material
		kayu mdf 3 mm

Menyatakan bahwa Laporan Tugas Akhir ini merupakan karya ilmiah hasil pemikiran sendiri secara orisinil dan saya susun secara mandiri dengan tidak melanggar kode etik hak karya cipta. Laporan Tugas Akhir ini juga bukan merupakan karya yang pernah di ajukan untuk memperoleh gelar akademik tertentu suatu perguruan tinggi, dan sepanjang pengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis di acu dalam naskah ini dan disebutkan dalam daftar pustaka.

Apabila di kemudian hari ternyata Laporan Tugas Akhir ini terbukti melanggar kode etik karya cipta atau merupakan karya yang dikategorikan mengandung unsur plagiarisme, maka saya bersedia untuk melakukan penelitian baru dan menyusun laporan sebagai Laporan Tugas Akhir sesuai ketentuan yang berlaku.

Demikian pernyataan ini saya buat dengan sebenarnya dan sesungguhnya

Nama : Risky Ramadhon NIM : 21021010

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI KARYA TULIS ILMIAH UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Politeknik Harapan Bersama Tegal, saya yang bertanda tangan dibawah ini :

Nama	: Risky Ramadhon
NIM	: 21021010
Jurusan/Program Studi	: D-3 Teknik Mesin
Jenis Karya	: Karya Tulis Ilmiah

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Politeknik Harapan Bersama Tegal Hak Bebas Royalti Noneksklusif (*None Exclusive Royalti Free Right*) atas karya ilmiah saya yang berjudul : PROSES KECEPATAN PEMOTONGAN DAN GRAFIR MENGGUNAKAN MESIN CNC LASER *CUTTING* CO₂ 60WATT MATERIAL KAYU MDF 3 MM. Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti/Noneksklusif ini Politeknik Harapan Bersama Tegal berhak menyimpan, mengalih media/formatkan, mengelola dalam bentuk pengkalan data (*database*), merawat dan mempublikasikan karya ilmiah saya selama tetap mencantumkan nama saya sebagai penulis pencipta dan pemilik hak cipta.

Demikian pernyataan saya buat dengan sebenarnya.

HALAMAN MOTTO DAN PERSEMBAHAN

Motto

Yakin, Ikhlas dan Istiqomah

"Berangkat dengan penuh keyakinan"

"Berjalan dengan penuh keikhlasan"

"Istiqomah dalam menghadapi cobaan"

"Sesungguhnya bersama kesukaran itu ada keringanan. Karena itu bila kau sudah selesai (mengerjakan yang lain). Dan berharaplah kepada Tuhanmu. (Q.S Al Insyirah : 6-8)

Persembahan

Puji syukur kepada Tuhan Yang Maha Esa atas segala rahmat dan hidayahnya yang telah memberikan kekuatan, kesehatan, dan kesabaran untukku dalam mengerjakan laporan kerja lapangan ini.

"Aku persembahkan cinta dan sayangku kepada keluarga saya, Orang tua saya yang telah menjadi motivasi dan inspirasi dan tiada henti memberikan dukungan do'anya."

Terimakasih yang tak terhingga buat dosen - dosen saya, terutama pembimbing saya yang tidak pernah lelah dan sabar memberikan bimbingan dan arahan kepada saya. Terimakasih juga saya persembahkan kepada para sahabat saya yang senantiasa menjadi penyemangat dan menemani di setiap hari saya.

ABSTRAK

PROSES KECEPATAN PEMOTONGAN DAN *GRAFIR* MENGGUNAKAN MESIN LASER *CUTTING* CO₂ 132560WG 60 WATT MATERIAL KAYU MDF 3 MM

Disusun oleh

RISKY RAMADHON

NIM: 21021010

Teknologi laser CO2 telah muncul sebagai opsi yang layak untuk pemotongan kayu. Laser CO2 lebih disukai dalam manufaktur karena efisiensinya dan kemudahan penggunaannya. Makalah ini berfokus pada proses pemotongan dan pengukiran laser menggunakan Medium Density Fiberboard (MDF) 3 mm dengan mesin pemotong laser CO₂ 60 watt. Studi ini terbatas pada penggunaan mesin pemotong laser Tipe 132560WG 60WATT, pemrograman dalam aplikasi Lightburn, dan secara khusus mengkaji pengaruh daya dan kecepatan pada proses pengukiran dan pemotongan. Kayu mangium, yang melimpah di Indonesia, dipilih untuk pengujian karena manfaat ekologisnya dan siklus pemanenan yang cepat. MDF, yang berasal dari kayu karet, dieksplorasi untuk berbagai aplikasi dan proses manufaktur, termasuk pemotongan laser untuk produksi furnitur dan pintu. Tujuannya meliputi pemahaman pengoperasian mesin pemotong laser 60W, penguasaan aplikasi Lightburn untuk kontrol laser, dan evaluasi kinerja MDF 3mm dalam uji pemotongan dan pengukiran. Penelitian ini bertujuan untuk meningkatkan pengetahuan dalam aplikasi teknologi laser untuk pemrosesan kayu dan menyoroti praktik pemrosesan kayu berkelanjutan.Untuk pemotongan yang sempurna menggunakan speed 10 mm/s dan power 60%, dan untuk prose grafir menggunakan speed 333 mm/s dan power 50 % akan menghasilkan grafir yang tidak terlalu gosong. Tesis ini disusun menjadi lima bab: Pendahuluan, Tinjauan Pustaka, Metodologi Penelitian, Hasil dan Pembahasan, dan Kesimpulan. Setiap bab berkontribusi pada pemahaman komprehensif tentang teknologi pemotongan laser dan aplikasinya dalam pemrosesan kayu.

Kata kunci: Pemotongan laser, laser CO₂, Medium Density Fiberboard (MDF), Lightburn, pengolahan kayu.

ABSTRACT

PROCESS OF CUTTING SPEED AND ENGRAFING USING A 132560WG 60 WATT LASER CUTTING MACHINE ON 3MM MDF WOOD MATERIAL

compiled by:

RISKY RAMADHON

NIM: 21021010

 CO_2 laser technology has emerged as a viable option for wood cutting. CO_2 lasers are preferred in manufacturing due to their efficiency and ease of use. This paper focuses on the laser cutting and engraving process using 3 mm Medium Density Fiberboard (MDF) with a 60 watt CO₂ laser cutting machine. This study is limited to the use of the Type 132560WG 60WATT laser cutting machine, programming in the Lightburn application, and specifically examines the influence of power and speed on the engraving and cutting processes. Mangium wood, which is abundant in Indonesia, was chosen for testing because of its ecological benefits and fast harvest cycle. MDF, which is derived from rubberwood, is being explored for a variety of applications and manufacturing processes, including laser cutting for the production of furniture and doors. Objectives include understanding the operation of a 60W laser cutting machine, mastering the Lightburn application for laser control, and evaluating the performance of 3mm MDF in cutting and engraving tests. This research aims to increase knowledge in the application of laser technology for wood processing and highlight sustainable wood processing practices. For perfect cutting, use a speed of 10 mm/s and 60% power, and for the engraving process use a speed of 333 mm/s and 50 % power. produces engravings that are not too burnt. This thesis is organized into five chapters: Introduction, Literature Review, Research Methodology, Results and Discussion, and Conclusion. Each chapter contributes to a comprehensive understanding of laser cutting technology and its applications in wood processing.

Keywords: Laser cutting, CO₂ laser, Medium Density Fiberboard (MDF), Lightburn, wood processing.

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat dan karunia-Nya kepada Penulis, sehingga penulis dapat melewati masa studi dan menyelesaikan Tugas Akhir yang merupakan tahap akhir dari proses untuk memperoleh gelar Ahli Madya Teknik Mesin di Program Studi DIII Teknik Mesin Politeknik Harapan Bersama.

Keberhasilan penulis dalam menyelesaikan Tugas Akhir ini tidak lepas dari bantuan orang-orang yang dengan segenap hati memberikan bantuan, bimbingan dan dukungan, baik moral maupun material. Dalam kesempatan ini penulis mengucapkan terima kasih kepada:

- Bapak Agung Hendarto, S.E, M.A selaku Direktur Program Studi DIII Politeknik Harapan Bersama.
- Bapak M. Taufik Qurohman, M.Pd selaku dosen Ketua Program Studi DIII Teknik Mesin Politeknik Harapan Bersama.
- 3. Bapak Amin Nur Akhmadi, M.T selaku Dosen Pembimbing I.
- 4. Bapak Andre Budhi Hendrawan, ST selaku Dosen Pembimbing II.
- Bapak Faqih Fatkhurrozak, M.T, M. Khumedi Usman, M.Eng, dan Amin Nur Akhmadi, M.T selaku dosen penguji laporan Tugas Akhir.
- Bapak/Ibu dosen pengampu Program Studi DIII Teknik Mesin Politeknik Harapan Bersama.

Penulis menyadari bahwa dalam menulis Tugas Akhir ini terdapat kekurangan dan keterbatasan, oleh karena itu kritik dan saran yang sifatnya membangun untuk kesempurnaan dan kemajuan penulis dimasa yang akan datang sangat diharapkan. Akhir kata penulis berharap semoga Tugas Akhir ini dapat bermanfaat bagi seluruh pembaca.

Tegal, 14 Agustus 2024

Risky Ramadhon

DAFTAR ISI

HALAM	AN JUDUL i
HALAM	AN PERSETUJUANii
HALAM	AN PENGESAHANiii
HALAM	AN PERNYATAANiv
HALAM	AN PERNYATAAN PERSETUJUAN PUBLIKASI KARYA TULIS
ILMIAH	UNTUK KEPENTINGAN AKADEMIS v
HALAM	AN MOTTO DAN PERSEMBAHAN vi
ABSTRA	٨K vii
ABSTRA	ACTviii
KATA PE	ENGANTARix
DAFTAR	x ISI x
DAFTAR	R GAMBAR xiii
DAFTAR	R TABEL xvi
`BAB I P	ENDAHULUAN 1
1.1	Latar Belakang 1
1.2	Rumusan Masalah 3
1.3	Batasan Masalah 3
1.4	Tujuan
1.5	Manfaat4
1.6	Sistematika Penulisan
BAB II L	ANDASAN TEORI
2.1	Pengertian Kayu Mdf 6

2.2	Jen	is-Jenis Papan Komposit	7
2.2	2.1	Papan Serat Berkerapatan Sedang (MDF)	7
2.2	2.2	Papan Untai Berarah (OSB)	8
2.2	2.3	Papan Partikel	9
2.3	Pen	gertian Laser Cutting	10
2.4	Kel	kurangan dan Kelebihan Laser <i>Cutting</i>	.11
2.5	Jen	is-jenis Laser	12
2.6	5.1	Laser Fiber	13
2.6	5.2	Laser Engraving	14
2.6	5.3	Laser YAG	15
2.6	5.4	Laser CO ₂	16
2.6	Apl	ikasi <i>Lightburn</i>	17
2.7	Prii	nsip Kerja Laser <i>Cutting</i>	18
2.8	Par	ameter Laser <i>Cutting</i>	19
BAB II	I ME	TODE PENELITIAN	21
3.1	Dia	gram penelitian	21
3.2	Ala	t Dan Bahan	22
3.2	2.1	Alat yang di perlukan	22
3.2	2.2	Bahan Pengujian	24
3.3	Me	tode Pengumpulan Data	25
3.4	Me	tode Analisis	25
BAB IV	/ HA	SIL DAN PEMBAHASAN	26
4.1	Per	siapan pengujian	26
4.1	.1	Mempersiapkan alat dan bahan	26
4.1	.2	Hidupkan mesin	27

4.1.3	Pengoprasian Aplikasi Lightburn
4.1.4	Mempersiapkan bahan yang akan di uji
4.2 Pr	oses Pengujian Kayu Mdf 3 mm 32
4.2.1	Mode <i>Line</i>
4.2.2	Hasil Dari Pengujian Mode Line Speed 5 – 20
4.2.3	Mode Line
4.2.4	Hasil Uji Dari Mode Line Dengan Speed 1 – 10 mm/menit 42
4.2.5	Mode Fill
4.2.6	Hasil Uji Mode <i>Fill</i> kayu Mdf 3 mm Speed 100 – 400 mm/menit. 47
4.2.7	Mode Fill
4.2.8	Hasil Uji Mode Fill Kayu Mdf 3 mm Speed 10 – 100 mm/menit. 55
4.3 Pr	oses Pembuatan Stand Hp 56
4.4 Ha	asil dan Pembahasan
BAB V PE	NUTUP
5.1 Ke	esimpulan
5.2 Sa	ran
DAFTAR F	PUSTAKA
LAMPIRA	N

DAFTAR GAMBAR

Gambar 2. 1 Papan kayu Mdf
Gambar 2. 2 Papan Kayu OBS
Gambar 2. 3 Papan Partikel
Gambar 2. 4 Laser Fiber
Gambar 2. 5 Laser Engraving 15
Gambar 2. 6 Laser YAG 16
Gambar 2. 7 Laser CO ₂ 17
Gambar 2. 8 Aplikasi <i>Lightburn</i> 17
Gambar 2. 9 Prinsip kerja laser <i>cutting</i>
Gambar 3. 1 Diagram penelitian
Gambar 3. 2 Laptop
Gambar 3. 3 Laser <i>cutting</i> 60 watt
Gambar 3. 4 Mikroskop 24
Gambar 3. 5 Papan kayu MDF
Gambar 4. 1 Papan kayu Mdf
Gambar 4. 2 Hubungkan kabel ke stop kontak
Gambar 4. 3 Tarik tombol power mesin
Gambar 4. 4 Hubungkan kabel Kompresor
Gambar 4. 5 Tekan on untuk menghidupkan kompresor
Gambar 4. 6 Hubungkan kabel usb
Gambar 4. 7 Membuka aplikasi <i>lightbrun</i>
Gambar 4. 8 Tampilan awal aplikasi <i>lightburn</i>
Gambar 4. 9 Klik tombol <i>device</i>
Gambar 4. 10 Klik GBRL 31
Gambar 4. 11 Papan kayu MDF 31
Gambar 4. 12 Setting ketingian laser 32
Gambar 4. 13 Laser <i>tolls</i>
Gambar 4. 14 Klik <i>material</i> test

Gambar 4. 15 Setting power dan speed	. 33
Gambar 4. 16 Edit material setting	. 34
Gambar 4. 17 Klik edit teks	. 34
Gambar 4. 18 Hasil preview	35
Gambar 4. 19 Frame laser	35
Gambar 4. 20 Klik star untuk memulai	36
Gambar 4. 21 Hasil Pengujian Mode Line	36
Gambar 4. 22 Klik laser tolls	38
Gambar 4. 23 Klik material test	38
Gambar 4. 24 Setting power dan speed	. 39
Gambar 4. 25 Edit material setting	. 39
Gambar 4. 26 Klik edit teks	40
Gambar 4. 27 Klik Preview	40
Gambar 4. 28 Frame laser	41
Gambar 4. 29 Klik star untuk memulai	41
Gambar 4. 30 Hasil uji <i>Line</i>	42
Gambar 4. 31 Pilih Laser Tolls	43
Gambar 4. 32 Klik Material Test	. 44
Gambar 4. 33 Setting Parameter Power dan speed	. 44
Gambar 4. 34 Edit Material Setting	45
Gambar 4. 35 Edit Teks Setting	45
Gambar 4. 36 Klik Preview	. 46
Gambar 4. 37 Klik Frame	. 46
Gambar 4. 38 Klik Start	. 47
Gambar 4. 39 Hasil Mode Fill	. 47
Gambar 4. 40 Uji grafir speed 100 sampai 267	48
Gambar 4. 41Uji grafir speed 300 sampai 367	. 49
Gambar 4. 42Uji grafir speed 400	50
Gambar 4. 43 Pilih Laser Tolls	51
Gambar 4. 44 Klik Material Test	51
Gambar 4. 45 Setting Parameter Power dan speed	. 52

Gambar 4. 46 Edit Material Setting	52
Gambar 4. 47 Edit Teks Setting	53
Gambar 4. 48 Klik <i>Preview</i>	53
Gambar 4. 49 Klik <i>Frame</i>	54
Gambar 4. 50 Klik Start	54
Gambar 4. 51Hasil grafir speed 10 – 100 mm/s	55
Gambar 4. 52Uji hasil <i>grafir speed</i> 10 – 100	56
Gambar 4. 53membuka aplikasi <i>lightburn</i>	57
Gambar 4. 54 pilih file desain	57
Gambar 4. 55 blok seluruh desain	58
Gambar 4. 56 Setting mode <i>line</i>	58
Gambar 4. 57 setting mode <i>fill</i>	59
Gambar 4. 58 klik <i>preview</i>	59
Gambar 4. 59 setting laser di titik 0	60
Gambar 4. 60 klik <i>frame</i>	60
Gambar 4. 61 klik <i>start</i>	61
Gambar 4. 62 hasil pembuatan stand hp	61
Gambar 4. 63 hasil jadi produk stand hp	62

DAFTAR TABEL

Tabel 1 Spesifikasi laptop	22
Tabel 2 Spesifikasi mesin laser <i>cutting</i> 60 watt	23
Tabel 3 Hasil uji material mode <i>line</i> speed 5 – 20 mm/menit	37
Tabel 4 Hasil dari mode <i>line</i> speed 1 - 10 mm/menit	43