BAB I

PENDAHULUAN

1.1 Latar Belakang

Selama periode kehamilan dalam sembilan bulan, perempuan mengalami berbagai perubahan, baik dari segi fisik maupun psikologis. Proses ini membawa berbagai ketidaknyamanan, baik secara fisik maupun psikis yang muncul sejak awal kehamilan [1]. Pada masa kehamilan perlu menjaga kesehatan sebagai upaya untuk mengatasi ketidaknyamanan tersebut.

Mengikuti kelas yoga prenatal adalah metode yang sesuai untuk mempelajari tentang kesehatan bagi ibu hamil, melalui pertemuan tatap muka dalam kelompok dengan tujuan meningkatkan pemahaman yoga. Latihan yoga prenatal termasuk jenis olahraga yang ringan tetapi efektif untuk meningkatkan kebugaran dan fleksibilitas tubuh. Oleh karena itu, yoga prenatal dianggap sebagai kegiatan yang direkomendasikan untuk semua individu, termasuk ibu hamil. Latihan yoga dapat dijalankan di manapun dan kapanpun. Terdapat banyak manfaat yang diperoleh saat mengikuti kelas yoga untuk ibu hamil, yaitu membantu menjaga kekuatan, kesehatan, dan aktivitas tubuh selama masa kehamilan [2].

Yoga prenatal tidak hanya berguna untuk menjaga kesehatan ibu hamil selama kehamilan, melainkan juga untuk mempersiapkan diri menghadapi persalinan dengan kondisi yang sehat dan mencegah terjadinya komplikasi. yoga prenatal membantu persiapan persalinan dengan relaksasi tubuh. Fokus gerakan pada teknik dan *pose* yang aman di setiap tahap kehamilan. Beberapa manfaat yoga prenatal mencakup peningkatan aliran darah, pemeliharaan kesehatan mental, dan penurunan risiko komplikasi kehamilan [3].

Namun untuk beberapa ibu hamil, kegiatan ini tidak dapat dilakukan secara rutin dikarenakan adanya beberapa kendala seperti keterbatasan finansial untuk membayar instruktur senam yang berpengalaman, mengingat instruktur senam yang profesional membutuhkan banyak biaya. Hal ini juga sejalan dengan ibu hamil yang tidak boleh sembarang melakukan kegiatan yoga secara mandiri, karena apabila tidak mendapatkan pendampingan atau panduan yang baik dan tepat dapat menimbulkan kemungkinan terjadinya kesalahan fatal yang akan berdampak pada bayi dan ibunya. Oleh karena itu, diperlukan solusi yang dapat membantu ibu hamil yang memiliki keterbatasan tersebut agar tetap dapat melakukan senam yoga prenatal secara mandiri dan juga aman.

Kecerdasan buatan (AI) memungkinkan mesin untuk belajar dari pengalaman, menyesuaikan input baru, dan menjalankan tugas seperti manusia. Dengan teknologi ini, komputer dapat dilatih untuk menyelesaikan tugas tertentu dengan memproses sejumlah besar data dan mengenali pola dalam data. Teknologi ini bisa dimanfaatkan untuk mengenali gerakan yoga khusus yang aman bagi ibu hamil. Aplikasi dapat belajar dari variasi gerakan yang sesuai dengan kebutuhan dan kenyamanan ibu hamil.

Penelitian serupa pernah dilakukan yaitu membuat sistem menggunakan teknik deep learning menggunakan model *Artificial Neural Network (ANN)* untuk mengklasifikasikan gerakan Yoga Hatha dan mendeteksi *pose* yoga yang salah serta memberikan feedback secara real-time untuk para trainer sehingga mereka dapat mempertahankan postur tubuh yang benar untuk *pose* Yoga Hatha tertentu [4]. Model berhasil mencapai akurasi pengujian sebesar 82,2% dan berhasil mengurangi waktu latihan rata-rata hingga rata-rata 6,4 detik saat diuji pada 20 peserta dengan fitur tubuh yang berbeda. Akan tetapi terdapat kekurangan dari penelitian tersebut karena hanya pengembangan model saja.

Berdasarkan permasalahan yang sudah dijelaskan maka perlu dilakukan pengembangan Aplikasi Preg-Fit. Aplikasi dapat menjadi solusi untuk membantu ibu hamil menjaga kesehatan ibu dan bayi saat mempersiapkan fisik dan psikologis dalam menghadapi persalinan, terutama bagi mereka yang tidak memiliki akses ke kelas yoga prenatal atau instruktur senam. Aplikasi Preg-Fit juga memiliki fitur *chatbot* yang digunakan untuk memvalidasi kondisi ibu hamil sebelum mendaftar dan menggunakan aplikasi Preg-Fit. Selain itu aplikasi ini memberikan solusi praktis dan mudah diakses bagi ibu hamil agar tetap bisa menjaga kesehatan dan kebugaran mereka selama masa kehamilan.

1.2 Perumusan Masalah

Berikut ini merupakan rumusan masalah, diantaranya yaitu:

1. tidak semua ibu hamil memiliki akses mudah ke tempat-tempat yang menyediakan kelas senam yoga prenatal, terutama bagi mereka yang tinggal di

- daerah terpencil atau jauh dari pusat kota. Jarak yang jauh ini menyulitkan mereka untuk mengikuti kelas secara rutin.
- 2. ibu hamil seringkali memiliki keterbatasan waktu karena harus mengurus pekerjaan rumah tangga, pekerjaan kantor, atau kegiatan lainnya. Jadwal yang padat membuat mereka sulit untuk menghadiri kelas senam yoga pada waktu yang telah ditentukan.
- 3. biaya untuk mengikuti kelas senam yoga prenatal yang dibimbing oleh instruktur profesional relatif mahal. Hal ini menjadi beban tambahan bagi ibu hamil, terutama bagi mereka yang memiliki keterbatasan finansial.

1.3 Pembatasan Masalah

Terdapat beberapa batasan fitur pada Aplikasi Preg-Fit di antaranya:

- 1. aplikasi hanya dikembangkan pada platform *mobile* android, karena *mobile* android merupakan sistem operasi yang paling banyak digunakan.
- 2. gerakan pada tiap trimester berbeda-beda disesuaikan dengan usia kehamilan sehingga meminimalisir cidera pada ibu hamil. Dataset yang digunakan terdapat 6 kelas gerakan yoga untuk ibu hamil. Gerakan yang digunakan sebagai Dataset sudah disesuaikan dengan expert yoga prenatal sehingga gerkan tersebut aman apabila dilakukan oleh ibu hamil.
- 3. aplikasi Preg-Fit hanya dapat mendeteksi delapan gerakan senam yoga ibu hamil yang telah diklasifikasikan menggunakan metode *ANN*.

1.4 Tujuan dan Manfaat

1.3.1 Tujuan

Terdapat beberapa tujuan dari pembuatan aplikasi Preg-Fit, di antaranya sebagai berikut:

- menyediakan solusi bagi ibu hamil untuk melakukan senam yoga prenatal kapan saja dan di mana saja, tanpa terhalang oleh jarak dari tempat latihan.
- menyediakan alternatif yang lebih ekonomis dibandingkan dengan biaya mengikuti kelas senam yoga prenatal yang dibimbing oleh instruktur profesional.

1.3.2 Manfaat

Terdapat beberapa manfaat dari pembuatan aplikasi Preg-Fit, di antaranya sebagai berikut:

- ibu hamil tetap dapat melakukan yoga prenatal sesuai dengan panduan yang tepat di berbagai lokasi, termasuk di daerah terpencil.
- ibu hamil dapat menyesuaikan waktu latihan mereka sesuai dengan kesibukan sehari-hari, tanpa harus khawatir melewatkan kelas yang dijadwalkan.
- 3. dengan adanya aplikasi ini, ibu hamil tidak perlu mengeluarkan biaya besar untuk mengikuti kelas senam yoga prenatal, sehingga lebih terjangkau.

1.5 Tinjauan Pustaka

Beberapa penelitian tentang pengembangan aplikasi deteksi *pose* tubuh seperti yang dilakukan oleh Omar Tarek dkk pada tahun 2021 [4], bertujuan meningkatkan pengalaman belajar yoga dan menghemat waktu latihan bagi pemula dengan mengembangkan sistem yang memanfaatkan teknologi untuk mendukung praktik yoga jarak jauh. Penelitian tersebut menggunakan teknik *machine learning* dengan model *Artificial Neural Network* (*ANN*) dan model human *pose tracking*

untuk mengklasifikasikan gerakan yoga hatha serta mendeteksi posisi yoga yang salah. Hasil dari penelitian tersebut menunjukkan bahwa model yang digunakan berhasil mencapai akurasi sebesar 82,2% saat diuji, dan juga berhasil mengurangi rata-rata waktu latihan sebanyak 6,4 detik saat diuji pada 20 peserta yang memiliki karakteristik tubuh yang berbeda.

Penelitian selanjutnya dilakukan oleh Iluminada Vivien R. Domingo dkk pada tahun 2022 [5]. Penelitian tersebut bertujuan menyediakan solusi yang dapat membantu pengguna dalam merencanakan dan menjalankan latihan *gym* sesuai dengan tipe tubuh mereka. Penelitian tersebut menggunakan pengenalan gambar melalui Jaringan Syaraf Tiruan (*ANN*) yang dilatih untuk mengenali tipe-tipe tubuh dan menggunakan platform C# untuk mengimplementasikan *ANN* tersebut ke dalam aplikasi. Hasil dari penelitian tersebut model memiliki akurasi dengan ratarata 64,38%, efektifitas dan akurasi tidak hanya bergantung pada jumlah data yang dilatih tetapi juga pada kualitas data set.

Penelitian lain dilakukan oleh Maria Anto Bennet dkk pada tahun 2023 [6]. Penelitian tersebut bertujuan menghasilkan suatu sistem yang dapat membantu individu belajar yoga dengan benar secara mandiri. *Dataset* yang digunakan berupa 85 video dengan partisipasi 15 peserta yang melakukan enam *pose* yoga yang berbeda. Penelitian tersebut menggunakan *frame*work *Mediapipe* untuk mengekstrak titik-titik kunci pada tubuh pengguna. Selanjutnya, menggunakan model Jaringan Syaraf Tiruan (*ANN*) untuk mengidentifikasi *pose* yoga, dan *Long-Short Term Memory* (*LSTM*) untuk mengenali hasil klasifikasi.

Tabel 1. 1 Ringkasan Penelitian Sebelumnya

					Kekurangan	
No	Tahun	Judul	Teknologi	Hasil	dan	Pembeda
					Kelebihan	
1	2021	Yoga	ANN	Model	Kekurangan	Dataset
		Trainer for		yang	nya	yang
		Beginners		digunakan	penelitian	digunaka
		Via		berhasil	menunjukka	n pada
		Machine		mencapai	n bahwa	penelitia
		Learning		akurasi	sistem	n
				sebesar	cenderung	tersebut
				82,2%	lebih baik	menggun
				saat diuji,	dalam	akan
				dan juga	mengidentif	Dataset
				berhasil	ikasi	gerakan
				menguran	gerakan	yoga
				gi rata-	yoga pada	hatha,
				rata waktu	peserta	sedangka
				latihan	dengan	n pada
				sebanyak	tinggi badan	penelitia
				6,4 detik	antara	n ini
				saat diuji	165cm dan	menggun

No	Tahun	Judul	Teknologi	Hasil	Kekurangan dan	Pembeda
					Kelebihan	
				pada 20	175cm.	akan
				peserta	Namun, hal	Dataset
				yang	ini berarti	gerakan
				memiliki	bahwa	yoga
				karakterist	sistem	prenatal.
				ik tubuh	mungkin	Penelitia
				yang	kurang	n
				berbeda.	efektif	sebelum
					dalam	nya
					mengenali	menggun
					gerakan	akan
					pada	webcam
					individu	untuk
					yang	merekam
					memiliki	gerakan
					tinggi badan	yoga
					di luar	sedangka
					rentang	n pada
					tersebut,	penelitia
					sedangkan	n ini

					Kekurangan	
No	Tahun	Judul	Teknologi	Hasil	dan	Pembeda
					Kelebihan	
					untuk	akan
					kelebihan	menggun
					dari	akan
					penelitian	kamera
					ini yaitu	smartpho
					berhasil	ne.
					mengurangi	
					waktu	
					latihan bagi	
					pemula	
					Yoga,	
					menunjukka	
					n efektivitas	
					sistem yang	
					diusulkan	
					dalam	
					meningkatk	
					an efisiensi	
					belajar.	

No	Tahun	Judul	Teknologi	Hasil	Kekurangan dan	Pembeda
					Kelebihan	
2	2022	iGYM:	ANN, C#	Hasil dari	Kekurangan	Dataset
		Implementat		penelitian	dari	yang
		ion of Image		model	penelitian	digunaka
		Recognition		memiliki	ini adalah	n pada
		Using		akurasi	jumlah	penelitia
		Silhouette		dengan	contoh yang	n
		Extraction		rata-rata	digunakan	tersebut
		and		64,38%,	untuk	menggun
		Artificial		efektifitas	melatih	akan
		Neural		dan	model	Dataset
		Network as		akurasi	mungkin	gerakan
		Gym		tidak	tidak	gym,
		Instructor		hanya	mencukupi,	sedangka
				bergantun	sehingga	n pada
				g pada	bisa	penelitia
				jumlah	mempengar	n ini
				data yang	uhi tingkat	menggun
				dilatih	akurasi dari	akan
				tetapi juga	model yang	Dataset
				pada	dibuat,	gerakan

					Kekurangan	
No	Tahun	Judul	Teknologi	Hasil	dan	Pembeda
NO	1 anun	Judui	Teknologi	114511		1 cmocda
					Kelebihan	
				kualitas	sedangkan	yoga
				Dataset.	untuk	prenatal.
					kelebihan	
					dari	
					penelitian	
					ini adalah	
					aplikasi	
					iGYM yang	
					dikembangk	
					an tidak	
					hanya	
					mengklasifi	
					kasikan tipe	
					tubuh	
					pengguna,	
					tetapi juga	
					memberikan	
					rekomendas	
					i rutinitas	

No	Tahun	Judul	Teknologi	Hasil	Kekurangan	Pembeda
					Kelebihan	
					latihan yang	
					sesuai.	
3	2023	Modeling of	ANN,	Hasil	Kekurangan	Dataset
		Upper Limb	LSTM,	penelitian	dari	yang
		and	Mediapipe	menunjuk	penelitian	digunaka
		Prediction		kan	ini adalah	n pada
		of Various		bahwa	penelitian	penelitia
		Yoga		dengan	ini hanya	n
		Postures		mengguna	mengemban	tersebut
		using		kan	gkan model	menggun
		Artificial		<i>frame</i> wor	untuk	akan
		Neural		k	mengklasifi	Dataset
		Networks		Mediapip	kasikan	gerakan
				e untuk	pose yoga,	yoga
				mengekstr	sedangkan	secara
				ak titik-	untuk	umum
				titik kunci	kelebihan	dan
				pada	penelitian	hanya
				tubuh	ini yaitu	sebatas
				pengguna,	penelitian	pemodel

No	Tahun	Judul	Teknologi	Hasil	Kekurangan dan Kelebihan	Pembeda
				serta	ini	an,
				memanfaa	mendapatka	sedangka
				tkan	n tingkat	n pada
				model	akurasi	penelitia
				Jaringan	yang tinggi	n ini
				Syaraf	dalam	menggun
				Tiruan	mengklasifi	akan
				(ANN)	kasikan	Dataset
				untuk	pose yoga,	gerakan
				mengident	seperti 98%	yoga
				ifikasi	dan 97%.	prenatal
				pose yoga,	Ini	yang
				dan Long-	menunjukka	kemudia
				Short	n bahwa	n
				Term	pendekatan	dikemba
				Memory	yang	ngkan
				(LSTM)	diusulkan	menjadi
				untuk	memiliki	aplikasi
				mengenali	potensi	android.
				hasil	untuk	

					Kekurangan	
No	Tahun	Judul	Teknologi	Hasil	dan	Pembeda
					Kelebihan	
				klasifikasi	memberikan	
				dapat	hasil yang	
				mencapai	akurat dan	
				tingkat	dapat	
				akurasi	diandalkan	
				yang	dalam	
				sangat	pengenalan	
				baik yaitu	pose yoga	
				sebesar	dalam video	
				98%,	secara real-	
				sehingga	time.	
				model		
				yang		
				dikemban		
				gkan		
				mampu		
				mempredi		
				ksi <i>pose</i>		
				yoga		
				dengan		

					Kekurangan	
No	Tahun	Judul	Teknologi	Hasil	dan	Pembeda
					Kelebihan	
				akurasi		
				yang		
				tinggi.		

1.6 Data Penelitian

1.5.1 Dataset

Terdapat dua *dataset* penelitian yang digunakan pada Aplikasi Preg-Fit yang digunakan untuk membuat pemodelan, yaitu model deteksi gerakan senam yoga hamil dan model dalam pembuatan *chatbot* pada fitur daftar.

1. Dataset Gerakan Yoga Ibu Hamil

Semakin banyak data yang digunakan dalam sistem deteksi gerakan senam yoga pada ibu hamil berbasis deep learning, maka akan semakin tinggi akurasi sistem tersebut. Karenanya dataset memainkan peran penting dalam mengimplementasikan sistem deteksi gerakan senam yoga pada ibu hamil. Akan tetapi dataset tersebut tidak mudah diakses oleh masyarakat umum, salah satu platform yang menyediakan public dataset adalah Kaggle [7], namun dari platform tersebut tidak menyediakan dataset berupa video gerakan yoga pada ibu hamil, oleh karena itu penting untuk membuat dataset sendiri yang berfokus pada pergerakan tubuh saat melakukan yoga pada ibu hamil. Dataset

yoga dibuat sendiri dengan mengunduh video dari instruktur senam yoga hamil di YouTube. Hasilnya, diperoleh enam label yang masing-masing memiliki durasi video kurang lebih tiga menit dengan jumlah total frame 30.000.

2. Dataset Chatbot

Dataset chatbot dirancang untuk memverifikasi apakah ibu hamil yang belum pernah berkonsultasi dengan dokter dapat mendaftar aplikasi Preg-Fit. dataset pertanyaan ini terdiri dari sembilan pertanyaan utama. Setiap pertanyaan memiliki dua tag atau label yang berisi jawaban positif dan negatif, sehingga total terdapat delapan belas tag. Setiap tag memiliki pattern yang mencakup jawaban positif atau negatif dari pertanyaan yang diberikan oleh chatbot, serta respons berupa pertanyaan yang digunakan oleh chatbot untuk menanyakan kondisi ibu hamil saat akan mendaftar.

1.5.2 Pengumpulan Dataset

Pengumpulan *dataset* merupakan langkah penting dalam pengembangan aplikasi Preg-Fit untuk memastikan keakuratan sistem deteksi gerakan senam yoga serta verifikasi kondisi kesehatan ibu hamil ketika mendaftar. Proses ini melibatkan dua tahap yaitu pengumpulan *dataset* yoga dan pengumpulan *dataset chatbot*.

1. Pengumpulan Dataset Yoga

Sebelum mengumpulkan *Dataset* dilakukan konsultasi dengan *expert* yoga antenatal Amalia N.N, Amd. Keb CHE dari sanggar Lia Azzahra Mom&BabySpa untuk menentukan jenis gerakan yoga yang aman untuk ibu

hamil apabila dilakukan dengan mandiri. Selanjutnya tahap pengumpulan dataset untuk deteksi gerakan senam yoga pada ibu hamil telah dilakukan dengan mengunduh video gerakan yoga dari platform YouTube. Terdapat sekitar 40 video dengan berbagai durasi, yang mewakili berbagai usia trimester kehamilan. Dalam setiap video, terdapat variasi jenis dan urutan gerakan yoga yang berbeda-beda untuk setiap trimester.

2. Pengumpulan Dataset Chatbot

Dataset pertanyaan ini diperoleh melalui konsultasi dengan Dr. Helena Sunarja Sp.OG dari Halodoc dan ahli yoga antenatal, Bu Amalia Nur Nakhar. Dari konsultasi dengan Dr. Helena, dihasilkan pertanyaan-pertanyaan yang berfokus pada kondisi medis dan kesehatan ibu hamil, sementara dari Bu Amalia diperoleh pertanyaan-pertanyaan yang terkait dengan aktivitas fisik sebelum dan selama kehamilan.

1.5.3 Pemrosesan *Dataset*

Preprocessing dataset adalah tahap krusial dalam pengembangan aplikasi Preg-Fit untuk memastikan data yang digunakan optimal dan siap untuk analisis. Proses ini mencakup preprocessing dataset yoga dan preprocessing dataset chatbot.

1. Pemrosesan Dataset Yoga

Dataset yang digunakan dalam penelitian ini mengalami beberapa tahap pemrosesan yang terperinci. Pertama, video-video yang telah diunduh dari berbagai sumber dipisahkan berdasarkan usia trimester kehamilan. Selanjutnya, menggunakan video editor untuk memotong video menjadi

segmen-segmen yang berisi gerakan yoga. Pemotongan ini dilakukan untuk setiap jenis gerakan yang ada dalam video. Setelah pemotongan, segmen-segmen video yang berisi jenis gerakan yoga yang sama dikelompokkan dan digabungkan menjadi video yang berdurasi masing-masing 3 menit. Hasilnya terdapat enam jenis gerakan yoga sudah disetujui oleh *expert* untuk dilakukan sendiri dengan aman, Berikut Gambar 1.1 merupakan sampel gerakan *dataset* video yang berhasil di kumpulkan.

Gambar 1. 1 Capture Pose Yoga

Selanjutnya tahap *preprocessing* data menggunakan *Mediapipe*. Proses ini melibatkan perubahan video menjadi *sequence frame-frame* gambar yang kemudian diberi *landmark* atau titik-titik penting oleh model holistic *Mediapipe*. Langkah selanjutnya adalah menjalankan fungsi pelabelan pada *Dataset* dan menyimpan hasilnya dalam format CSV. Dalam proses ini, nilai titik poin dari setiap *frame* diambil dan kemudian disimpan dalam sebuah file CSV. Hasil akhir dari tahap *preprocessing* ini adalah *dataset* dalam bentuk data tabular yang terdiri dari atribut class, x, y, z, dan v.

2. Pemrosesan Dataset Chatbot

Pemorsesan data merupakan tahap penting dalam pengembangan model *chatbot* untuk memastikan data yang digunakan dalam pelatihan model adalah bersih, konsisten, dan relevan. Pemorsessan melibatkan berbagai teknik yang

bertujuan untuk membersihkan dan menyiapkan data mentah, sehingga dapat meningkatkan kualitas dan efisiensi pelatihan model AI [8].

Pada tahap *preprocessing dataset chatbot*, dilakukan beberapa langkah penting untuk memastikan kualitas data yang optimal. Pertama, konversi dan pembersihan data dilakukan dengan mengubah data dari format JSON ke Data Tabular untuk mempermudah proses pembuatan model *AI* dapat dilihat pada Gambar 1.2.

Gambar 1. 2 Konversi JSON Ke Data Tabular

Pembersihan ini mencakup penghapusan karakter yang tidak relevan dan normalisasi teks untuk memastikan konsistensi dalam input dan output *chatbot*. Selanjutnya, pemeriksaan nilai null dilakukan untuk memastikan tidak ada nilai kosong yang dapat menyebabkan masalah selama pelatihan model, karena nilai null dapat mengakibatkan error atau ketidakakuratan hasil model. Terakhir, analisis jumlah *patterns* dan *tag* dilakukan untuk menilai keberagaman data terdapat 1024 teks pada *patterns* dan 18 *tag*.

1.5.4 Dataset yang dihasilkan

Berikut ini merupakan hasil *dataset* yoga dan *dataset chatbot* yang telah pembersihan data.

1. Dataset Yoga

Hasil dari konversi data berupa video menjadi *Dataset* berupa data tabular yang memiliki atribut class, dan poin-poin x1-x33, y1-33, z1-33, dan v1-v33. Ukuran *dataset* adalah 34400 baris x 133 kolom. Berikut merupakan Gambar 1.3 hasil *dataset* yang telah diubah ke dalam data tabular.

	class	x1	y1	z1	v1	x2	y2	z2	v2	x3	 z31	v31	x32	y32	z32	v32	x33	y33	z33	v33
0	1	0.295306	0.160737	-0.099735	0.999714	0.306924	0.144405	-0.131011	0.999689	0.309294	0.379903	0.832061	0.817530	0.835213	0.116113	0.995394	0.796992	0.752191	0.447524	0.838339
1	1	0.298347	0.162649	-0.017787	0.999488	0.310325	0.144803	-0.048656	0.999469	0.312708	0.333355	0.826143	0.816331	0.835653	0.115825	0.993717	0.791305	0.747927	0.404018	0.828590
2	1	0.301610	0.162907	-0.019311	0.999323	0.313809	0.144832	-0.048731	0.999307	0.316389	0.319472	0.819583	0.816295	0.836110	0.114975	0.992236	0.789045	0.746793	0.392560	0.819554
3	1	0.306229	0.163427	-0.015455	0.999199	0.318955	0.145006	-0.044262	0.999200	0.321624	0.321912	0.814098	0.816145	0.838036	0.114220	0.990864	0.788659	0.744519	0.391539	0.812167
4	1	0.310111	0.163433	-0.008827	0.999106	0.323569	0.144908	-0.036940	0.999123	0.326198	0.312896	0.809218	0.814232	0.841493	0.107407	0.989515	0.783222	0.744687	0.384099	0.805236
29995	7	0.754987	0.641979	-0.157723	0.999704	0.766293	0.661029	-0.135525	0.998283	0.765480	-0.148834	0.873534	0.169662	0.684317	-0.069097	0.776808	0.147577	0.634921	-0.262983	0.935858
29996	7	0.754979	0.641975	-0.157964	0.999694	0.766286	0.661029	-0.135825	0.998225	0.765474	-0.147517	0.873029	0.170213	0.684330	-0.068380	0.776130	0.147638	0.634881	-0.261088	0.935850
29997	7	0.754971	0.641932	-0.158085	0.999685	0.766284	0.661018	-0.136026	0.998169	0.765477	-0.143642	0.872357	0.170476	0.684309	-0.063625	0.774856	0.147695	0.634781	-0.255882	0.935835
29998	7	0.754965	0.641898	-0.158130	0.999677	0.766281	0.661006	-0.136126	0.998121	0.765475	-0.143700	0.871743	0.170622	0.684314	-0.064404	0.773899	0.147723	0.634764	-0.255981	0.935679
29999	7	0.754940	0.641692	-0.157800	0.999672	0.766267	0.660932	-0.135990	0.998090	0.765462	-0.144073	0.871396	0.170817	0.684319	-0.064639	0.772898	0.147805	0.634745	-0.255843	0.935583
30000 rg	ws × 13	3 columns																		

Gambar 1. 3 Data Tabular

Sebelum dilakukan proses *modelling*, data yang berhasil dikumpulkan dilakukan tahap pembersihan pada data yaitu dengan menghapus point x1-x11, point y1-y11, point z1-z11, dan point v1-v11 karena tidak dibutuhkan. Sehingga ukuran *dataset* menjadi 34400 baris x 89 kolom. Berikut merupakan Gambar 1.4 hasil *dataset* yang telah dibersihkan.

	class	×12	y12	z12	v12	x13	y13	z13	v13	×14	 z31	v31	x32	y32	z32	v32	x33	y33	z33	v33
0	1	0.354794	0.388501	-0.292648	0.999931	0.411358	0.298391	0.159446	0.999833	0.351463	0.379903	0.832061	0.817530	0.835213	0.116113	0.995394	0.796992	0.752191	0.447524	0.838339
1	1	0.354869	0.389911	-0.207802	0.999915	0.414756	0.295080	0.155126	0.999783	0.352841	0.333355	0.826143	0.816331	0.835653	0.115825	0.993717	0.791305	0.747927	0.404018	0.828590
2	1	0.357665	0.390557	-0.198926	0.999902	0.417554	0.293271	0.147762	0.999734	0.354444	0.319472	0.819583	0.816295	0.836110	0.114975	0.992236	0.789045	0.746793	0.392560	0.819554
3	1	0.360016	0.391359	-0.192904	0.999891	0.421788	0.292060	0.148198	0.999684	0.357159	0.321912	0.814098	0.816145	0.838036	0.114220	0.990864	0.788659	0.744519	0.391539	0.812167
4	1	0.361108	0.391823	-0.185718	0.999885	0.425621	0.290442	0.148896	0.999637	0.360315	0.312896	0.809218	0.814232	0.841493	0.107407	0.989515	0.783222	0.744687	0.384099	0.805236

29995	7	0.697574	0.737821	0.061316	0.996833	0.673469	0.469291	-0.042571	0.999855	0.818827	-0.148834	0.873534	0.169662	0.684317	-0.069097	0.776808	0.147577	0.634921	-0.262983	0.935858
29996	7	0.697629	0.737977	0.060742	0.996825	0.673539	0.469279	-0.042595	0.999852	0.819283	-0.147517	0.873029	0.170213	0.684330	-0.068380	0.776130	0.147638	0.634881	-0.261088	0.935850
29997	7	0.697678	0.738246	0.060342	0.996839	0.673623	0.469202	-0.042300	0.999849	0.820116	-0.143642	0.872357	0.170476	0.684309	-0.063625	0.774856	0.147695	0.634781	-0.255882	0.935835
29998	7	0.697714	0.738360	0.060130	0.996854	0.673706	0.469161	-0.041901	0.999846	0.820511	-0.143700	0.871743	0.170622	0.684314	-0.064404	0.773899	0.147723	0.634764	-0.255981	0.935679
29999	7	0.697719	0.738364	0.060130	0.996861	0.673852	0.469130	-0.039794	0.999844	0.820340	-0.144073	0.871396	0.170817	0.684319	-0.064639	0.772898	0.147805	0.634745	-0.255843	0.935583
0000 ro	ws x 89	columns																		

Gambar 1. 4 Dataset Yoga Clean

2. Dataset Chatbot

Setelah melakukan *preprocessing* pada *dataset*, tahap selanjutnya dalah *preprocessing* teks untuk mempersiapkan data dalam format yang lebih bersih dan konsisten. Proses ini melibatkan beberapa langkah penting. Pertama, teks

dan kecil yang dapat mempengaruhi analisis. Selanjutnya, *URL* dan angka dihapus dari teks, karena keduanya tidak relevan dalam konteks *chatbot* dan dapat menambah noise pada data. Karakter tanda baca juga dihilangkan untuk menyederhanakan teks dan mengurangi elemen yang tidak perlu. Terakhir, *whitespaces* di awal dan akhir teks dihapus untuk memastikan tidak ada spasi ekstra yang mengganggu pemrosesan. Langkah-langkah ini bertujuan untuk membersihkan dan menstandarkan teks input, sehingga data menjadi lebih konsisten dan siap digunakan dalam pelatihan model *AI chatbot*. Berikut Gambar 1.5 merupakan *Dataset chatbot clean*.

	patterns	tags
0	siap tanya aja belly bot	1
1	pasti siap ayo tanya sekarang	1
2	yup udah siap tanya apa aja	1
3	oke ayo mulai aja ada yang mau ditanyain	1
4	iya tentu tanya aja aku siap	1

Gambar 1. 5 Dataset Chatbot Clean

1.5.5 Alat Penelitian

Dalam pelaksanaan penelitian ini, digunakan sejumlah peralatan utama dan peralatan tambahan sebagai pendukung. Beberapa jenis peralatan yang digunakan mencakup perangkat keras dan pada Tabel 1.1 dijelaskan jenis perangkat lunak yang digunakan.

1. Perangkat Keras

- Laptop HP 14s
- Processor AMD Ryzen 5 Radeon Graphics

• SSD 512 GB dengan RAM 8 GB

2. Perangkat Lunak

Tabel 1. 2 Perangkat Lunak

No	Jenis Perangkat Lunak	Fungsi
1	Windows 10	Operating System
2	Windows 11	Operating System
3	Google Colab	Pembuatan Model
4	Хатрр	Tools
5	MySQL Database	Basis Data
6	Visual Studio Code	Text Editor
7	Flask	Integrasi Model dengan
		Flutter
8	Flutter	Pengembangan Aplikasi
9	Clip Clamp	Video Editor
10	Katalon	Tools Testing
11	Figma	Tools Design